Semi-Supervised Image Deraining Using Gaussian Processes

IEEE Transactions on Image Processing - Tập 30 - Trang 6570-6582 - 2021
Rajeev Yasarla1, Vishwanath A. Sindagi1, Vishal M. Patel1
1Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1109/CVPR.2018.00263

10.1109/TIP.2017.2708502

10.1109/ICCV.2015.388

zhang, 2017, Convolutional sparse and lowrank coding-based rain streak removal, Proc 7th IEEE Winter Conf Appl Comput Vis (WACV), 1259

10.1109/CVPR.2019.00396

10.1007/s11263-020-01366-3

10.1109/TIP.2017.2691802

10.1006/dspr.1999.0361

bhadauria, 2009, Online dictionary learning for sparse coding, Proc Int Conf Mach Learning (ICML), 689

10.1109/ICCV.2013.247

schaefer, 2003, UCID: An uncompressed color image database, Storage and Retrieval Methods and Appl for Multimedia, 5307, 472

10.1109/ICCV.2017.275

10.1109/ICCV.2001.937655

10.1109/LSP.2012.2227726

10.1109/CVPR.2018.00695

10.1109/TIP.2012.2214050

10.1109/CVPR.2018.00341

10.1109/TIP.2018.2869722

10.1007/978-3-319-46448-0_2

10.1109/ICCV.2015.169

zhang, 2017, Image de-raining using a conditional generative adversarial network, arXiv 1701 05957

yasarla, 2020, Syn2Real transfer learning for image deraining using Gaussian processes, Proc IEEE/CVF Conf Comput Vis Pattern Recognit (CVPR), 2723

10.1109/CVPR.2019.00400

10.1109/ICME.2006.262572

10.1109/TIP.2020.2973802

10.1007/s11263-014-0759-8

10.1007/s11263-006-0028-6

oliver, 2018, Realistic evaluation of deep semi-supervised learning algorithms, Proc Adv Neural Inf Process Syst, 3235

laine, 2016, Temporal ensembling for semi-supervised learning, arXiv 1610 02242

simonyan, 2014, Very deep convolutional networks for large-scale image recognition, arXiv 1409 1556

zhang, 2018, Multi-style generative network for real-time transfer, Proc Eur Conf Comput Vis (ECCV) Workshops

10.1007/978-3-319-46475-6_43

ronneberger, 2015, U-net: Convolutional networks for biomedical image segmentation, Proc Int Conf Med Image Comput Comput -Assist Intervent, 234

10.1109/TPAMI.2019.2938758

rasmussen, 2003, Gaussian processes in machine learning, Machine Learning Summer School, 63

lee, 2013, Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks, Proc Workshop challenges Represent Learn, 896

10.1109/TPAMI.2018.2858821

10.1109/CVPR.2016.299

10.1109/CVPR.2017.183

10.1109/CVPR.2019.00173

10.1109/ICCV.2017.276

fan, 2018, Residual-guide feature fusion network for single image deraining, arXiv 1804 07493

10.1109/TPAMI.2019.2895793

10.1016/j.cviu.2019.05.003

10.1109/TIP.2020.3023773

10.1109/JSTSP.2020.3039393

li, 2018, Recurrent squeeze-and-excitation context aggregation net for single image deraining, Proc Eur Conf Comput Vis (ECCV), 262

10.1109/CVPR.2019.00406

10.1109/CVPR.2018.00352

ren, 2015, Faster R-CNN: Towards real-time object detection with region proposal networks, Proc Adv Neural Inf Process Syst, 91

10.1007/978-3-030-01270-0_39

10.1109/CVPR.2018.00102

10.1109/CVPR.2018.00079

perera, 2018, UAV-GESTURE: A dataset for UAV control and gesture recognition, Proc Eur Conf Comput Vis (ECCV) Workshops

10.1007/978-3-030-01234-2_16

10.1109/CVPR.2017.186

10.1109/CVPR42600.2020.00317

10.1109/CVPR42600.2020.00837

10.1109/ICCV.2013.84

10.1109/CVPR42600.2020.01457

10.1109/CVPR.2019.00860

10.1109/CVPR.2019.00821

10.1109/ICCV.2019.00574

10.1109/CVPR.2019.01255