Semi-Supervised Graph-Based Hyperspectral Image Classification

Institute of Electrical and Electronics Engineers (IEEE) - Tập 45 Số 10 - Trang 3044-3054 - 2007
Gustau Camps‐Valls1, Tatyana V. Bandos1, Dengyong Zhou2
1Univ. de Valencia, Valencia
2Microsoft Research Limited, Redmond, WA, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

joachims, 2003, transductive learning via spectral graph partitioning, Proc ICML, 290

zhu, 2003, semi-supervised learning using gaussian fields and harmonic functions, Proc ICML, 20

10.1109/IGARSS.2006.996

10.1109/LGRS.2005.857031

zhou, 2004, learning with local and global consistency, Proc NIPS, 16

10.1007/978-3-540-28640-0_38

chapelle, 2003, cluster kernels for semi-supervised learning, Proc NIPS, 15

blum, 2001, learning from labeled and unlabeled data using graph mincuts, Proc ICML, 19

10.1023/B:MACH.0000033120.25363.1e

williams, 2001, using the nystrm method to speed up kernel machines, Proc Advances NIPS, 13, 682

jordan, 1999, Learning in Graphical Models

chung, 1997, CBMS Regional Conference Series in Mathematics

baldi, 2004, graph kernels for molecular classification and prediction of mutagenicity, toxicity, and anti-cancer activity, Proc Comput Biology Workshop NIPS

swain, 1978, Remote Sensing The Quantitative Approach, 136

10.1109/TIT.1968.1054102

seeger, 2001, Learning with labeled and unlabeled data

10.7551/mitpress/9780262033589.001.0001

zhu, 2005, Semi-supervised learning literature survey

10.1109/36.975001

dempster, 1977, maximum likelihood from incomplete data via the em algorithm, J R Stat Soc Ser B, 39, 1

10.1109/TGRS.2006.877950

vapnik, 1998, Statistical Learning Theory

10.1109/TGRS.2004.831865

10.1109/IGARSS.2007.4423098

zhou, 2007, Advances in Neural Information Processing Systems 19

10.1080/01431160110040323

10.1109/TGRS.2004.827262

szummer, 2001, partially labeled classification with markov random walks, Proc NIPS, 13

10.1109/TGRS.2005.846154

10.1017/CBO9780511809682

10.1109/36.239902

10.1109/36.225529

10.1109/36.602544

10.1109/36.789622

10.1109/36.752237

10.1109/TGRS.2005.861548

10.1080/02693799308901949

10.1007/978-3-662-03978-6

10.1080/014311699213622

10.1109/36.655348

schlkopf, 2002, Learning With KernelsSupport Vector Machines Regularization Optimization and Beyond

10.1145/130385.130401

10.1109/TPAMI.2004.1262185

gualtieri, 1999, support vector machine classifiers as applied to aviris data, Proc 8th JPL Airborne Geosci Workshop

ng, 2002, on spectral clustering: analysis and an algorithm, Proc NIPS, 14

smola, 2003, Kernels and Regularization on Graphs

10.1137/S0895479895281484

zhou, 2004, a regularization framework for learning from graph data, Proc ICML Workshop Statistical Relational Learning and Its Connections to Other Fields, 132

10.1126/science.236.4805.1092

anderson, 1983, The Architecture of Cognition

kondor, 2002, diffusion kernels on graphs and other discrete input spaces, Proc ICML, 315

kandola, 2003, learning semantic similarity, Proc NIPS, 15