Semantic theory of finite lattice-valued propositional logic
Tóm tắt
Từ khóa
Tài liệu tham khảo
Rosser J B, Turquette A R. Axiom schemes for M-valued propositional calculi. The J Symb Logic, 1945, 10: 61–82
Chang C C. A new proof of the completeness of the Lukasiewicz axioms. Trans Am Math Society, 1959, 93: 74–90
Kleene S C. Introduction to Metamathematics. Van Nostrand: Amsterdam and Princeton. 1952
Cintula P. From fuzzy logic to fuzzy mathematics. Ph.D. Thesis, Prague: Technical University, 2005
Cintula P, Hájek P. Triangular norm based predicate fuzzy logics. Fuzzy Sets Syst, 2010, 161: 311–346
Esteva F, Godo L, Noguera C. First-order t-norm based fuzzy logics with truth-constants: distinguished semantics and completeness properties. Annals Pure Appl Logic, 2009, 161: 185–202
Hájek P. Metamathematics of Fuzzy Logic, Trends in Logic. Vol. 4. Dordercht: Kluwer Academic Publishers, 1998
Wang G J. A formal deductive system of fuzzy propositional calculus. Chinese Sci Bull, 1997, 42: 1041–1045
Wang G J. Logic on a kind of algebras (I) (in Chinese). J Shaanxi Norm Univ (Nat Sci Ed), 1997, 25: 1–8
Pei D W, Wang G J. The completeness and applications of the formal system L*. Sci China Ser F-Inf Sci, 2002, 45: 40–50
Wang G J. Nonclassical Mathematical Logic and Approximate Reasoning (in Chinese). Beijing: Science Press, 2000
Hui X J, Wang G J. Randomization of classical inference patterns and its application. Sci China Ser F-Inf Sci, 2007, 50: 867–877
Pavelka J. On fuzzy logic(III). Z. fur Mathematik Logic u Grundlagen d Mathematic, 1979, 25: 447–464
Novák V. A comprehensive theory of trichotomous evaluative linguistic expressions. Fuzzy Sets Syst, 2008, 159: 2939–2969
Xu Y, Liu J, Song Z M, et al. On semantics of L-valued first-order logic-Lvfl. Int J Gen Syst, 2000, 29: 53–79
Xu Y, Ruan D, Qin K Y, et al. Lattice-Valued Logic-An Alternative Approach to Treat Fuzziness and Incomparability. Berlin, Heidelberg, New York: Springer-Verlag Press, 2003
Ying M S. The fundamental theorem of ultraproduct in Pavelkas logic. Z Math Logik Grundl Math, 1992, 38: 197–201
Turunen E. Mathematics Behind Fuzzy Logic. Berlin: Springer, 1999
Turunen E, Öztürk M, Tsoukiás A. Paraconsistent semantics for Pavelka style fuzzy sentential logic. Fuzzy Sets Syst, 2010, 161: 1926–1940
Wang D G, Gu Y D, Li H X. Generalized tautology in fuzzy modal propositional logic (in Chinese). Chinese J Electr, 2007, 35: 261–264