Semantic theory of finite lattice-valued propositional logic

Ping Xiao1
12 Intelligent Control Development Center, Southwest Jiaotong University, Chengdu 610031, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

McNaughton R. A theroem about infinite-valued sentential logic. The J Symb Logic, 1951, 16: 1–13

Rosser J B, Turquette A R. Axiom schemes for M-valued propositional calculi. The J Symb Logic, 1945, 10: 61–82

Post E L. Introduction to a general theory of elementary propositions. Am J Math, 1921, 43: 163–185

Chang C C. A new proof of the completeness of the Lukasiewicz axioms. Trans Am Math Society, 1959, 93: 74–90

Kleene S C. Introduction to Metamathematics. Van Nostrand: Amsterdam and Princeton. 1952

Novák, V. Which logic is the real fuzzy logic? Fuzzy Sets Syst, 2006, 157: 635–641

Cintula P. From fuzzy logic to fuzzy mathematics. Ph.D. Thesis, Prague: Technical University, 2005

Cintula P, Hájek P. Triangular norm based predicate fuzzy logics. Fuzzy Sets Syst, 2010, 161: 311–346

Esteva F, Godo L, Noguera C. First-order t-norm based fuzzy logics with truth-constants: distinguished semantics and completeness properties. Annals Pure Appl Logic, 2009, 161: 185–202

Hájek P. Metamathematics of Fuzzy Logic, Trends in Logic. Vol. 4. Dordercht: Kluwer Academic Publishers, 1998

Wang G J. A formal deductive system of fuzzy propositional calculus. Chinese Sci Bull, 1997, 42: 1041–1045

Wang G J. Logic on a kind of algebras (I) (in Chinese). J Shaanxi Norm Univ (Nat Sci Ed), 1997, 25: 1–8

Pei D W, Wang G J. The completeness and applications of the formal system L*. Sci China Ser F-Inf Sci, 2002, 45: 40–50

Wang G J. On the logic foundation of fuzzy reasoning. Inf Sci, 1999, 117: 47–88

Wang G J. Nonclassical Mathematical Logic and Approximate Reasoning (in Chinese). Beijing: Science Press, 2000

Hui X J, Wang G J. Randomization of classical inference patterns and its application. Sci China Ser F-Inf Sci, 2007, 50: 867–877

Wang G J, Zhou H J. Quantitative logic. Inf Sci, 2009, 179: 226–247

Pavelka J. On fuzzy logic(I). Z. fur Mathematik Logic u Grundlagen d Mathematic, 1979, 25: 45–52

Pavelka J. On fuzzy logic(II). Z. fur Mathematik Logic u Grundlagen d Mathematic, 1979, 25: 119–134

Pavelka J. On fuzzy logic(III). Z. fur Mathematik Logic u Grundlagen d Mathematic, 1979, 25: 447–464

Novák V. First-order fuzzy logic. Studia Logica, 1982, 46: 87–109

Novák V. On fuzzy type theory. Fuzzy Sets Syst, 2005, 149: 235–273

Novák V. Fuzzy logic with countable evaluated syntax revisited. Fuzzy Sets Syst, 2007, 158: 929–936

Novák V. A comprehensive theory of trichotomous evaluative linguistic expressions. Fuzzy Sets Syst, 2008, 159: 2939–2969

Xu Y, Qin K Y, Liu J, et al. L-valued propositional logic-Lvpl. Inf Sci, 1999, 114: 205–235

Xu Y, Liu J, Song Z M, et al. On semantics of L-valued first-order logic-Lvfl. Int J Gen Syst, 2000, 29: 53–79

Xu Y, Ruan D, Qin K Y, et al. Lattice-Valued Logic-An Alternative Approach to Treat Fuzziness and Incomparability. Berlin, Heidelberg, New York: Springer-Verlag Press, 2003

Ying M S. The fundamental theorem of ultraproduct in Pavelkas logic. Z Math Logik Grundl Math, 1992, 38: 197–201

Turunen E. Mathematics Behind Fuzzy Logic. Berlin: Springer, 1999

Turunen E, Öztürk M, Tsoukiás A. Paraconsistent semantics for Pavelka style fuzzy sentential logic. Fuzzy Sets Syst, 2010, 161: 1926–1940

Wang G J. Theory of Σ-(α-tautologies) in revised Kleene systems. Sci China Ser E, 1998, 41: 188–195

Wang D G, Gu Y D, Li H X. Generalized tautology in fuzzy modal propositional logic (in Chinese). Chinese J Electr, 2007, 35: 261–264

Wang G J, Duan Q L. Theory of (n) truth degrees of formulas in modal logic and a consistency theorem. Sci China Ser F-Inf Sci, 2009, 52: 70–83