Semantic social networks analysis

Social Network Analysis and Mining - Tập 3 - Trang 35-49 - 2012
Christophe Thovex1, Francky Trichet1
1Laboratoire d’Informatique de Nantes Atlantique (UMR-CNRS 6241), LINA, University of Nantes, Nantes cedex 03, France

Tóm tắt

In 1977, Freeman formalised generic measures of social networks analysis (SNA). Then, the Web 2.0 social networks have become global networks (e.g., FaceBook, MSN). This article presents a semantic model, non probabilistic and predictive, for the decisional analysis of professional and institutional social networks. The presented multidisciplinary model, in parallel to Galam sociophysics, integrates some semantic methods of knowledge engineering and natural language processing, some measures of statistic sociology and some electrodynamic laws, applied to the economic performance and social climate optimisation. It is currently under experimentation, in line with the Socioprise project, funded by the French State Secretariat at the prospective and development of the digital economy.

Tài liệu tham khảo

Andrade N, Brasileiro F, Cirne W, Mowbray M (2007) Automatic grid assembly by promoting collaboration in peer-to-peer grids. J Parallel Distrib Comput 67(8):957–966. doi:10.1016/j.jpdc.2007.04.011 Beauchamp Murray A (1965) An improved index of centrality. Behav Sci 10(2):161–163. doi:10.1002/bs.3830100205 Bhattacharyya P, Garg A, Wu S (2011) Analysis of user keyword similarity in online social networks. Soc Netw Anal Min 3:143–158 Brandes U, Fleischer D (2005) Centrality measures based on current flow. In: 22nd Symp. theoretical aspects of computer science (STACS 05). LNCS, vol 3404. Springer, Berlin, pp 533–544 Brehm J (1966) A theory of psychological reactance. Academic Press, New York Clauset A, Newman M, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70:6. doi:10.1103/PhysRevE.70.066111, http://www.ece.unm.edu/ifis/papers/community-moore.pdf Eéréto G (2011) Analyse sémantique des réseaux sociaux. Ph.D. thesis, Université de Nice Sophia-Antipolis, Laboratoire d’Informatique, Signaux, et Systémes de Sophia-Antipolis (L3S, UMR6070 CNRS) Freeman L, Bloomberg W, Koff S, Sunshine M, Fararo T (1960) Local community leadership. Syracuse University College, Syracuse Freeman L (1979) Centrality in social networks conceptual clarification. Soc Netw 1(3):215–239. 10.1016/0378-8733(78)90021-7 Freeman L, White D, Romney A (1989) Research methods in social network analysis. George Mason University Press Freeman L (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41 Galam S (2008) Sociophysics: a review of Galam models. Int J Mod Phys C 19(3):409 Gruber T (1995) Toward principles for the design of ontologies used for knowledge sharing. Int J Human Comput Stud 43(5/6):907–928 Gruber RT (2008) Collective knowledge systems: where the social web meets the semantic web. Web Semant Sci Serv Agents World Wide Web. 6(1):4–13 Jaccard P (1901) Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines. Bulletin de la Société Vaudoise des Sciences Naturelles 37:241–272 Macskassy S (2011) Contextual linking behavior of bloggers: leveraging text mining to enable topic-based analysis. Soc Netw Anal Min 4:355–375 Mika P (2005) Ontologies are us: a unified model of social networks and semantics. In: International semantic web conference. Lecture notes in computer science, vol 3729. International Semantic Web Conference 2005. Springer, Berlin, pp 522–536. doi:10.1.1.60.2861 Moreno J (1934) Who shall survive?—(Trad. fr) Fondements de la sociométrie, PUF Newman M (2004) Detecting community structure in networks. Eur Phys J B Condens Matter Complex Syst 38(2):321–320. doi:10.1140/epjb/e2004-00124-y Newman M (2006) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E 74(3):19. doi:10.1103/PhysRevE.74.036104 Newman M (2005) Finding community structure in networks using the eigenvectors of matrices. Soc Netw 27(1):39. doi:10.1016/j.socnet.2004.11.009 Pearson M, West P (2003) Drifting smoke rings: social network analysis and Markov processes in a longitudinal study of friendship groups and risk taking. Connect Bull Int Netw Soc Netw Anal 25(2):59–76. http://eprints.gla.ac.uk/2701/ Peters C, Nunzio G.D, Kurimo M, Mandl T, Mostefa D, Peñas A, Roda G (eds) (2010) Unsupervised morphological analysis by formal analogy. Lecture notes in computer science. Springer, Berlin Pitrat J (1990) Métaconnaissance: Futur de l’intelligence artificielle (Hermès) Robertson SE, Sparck Jones K (1976) Relevance weighting of search terms. J Am Soc Inf Sci 27(3):129–146 Shannon C (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–453 Then H, Feng M, Holonyak N (2010) Microwave circuit model of the three-port transistor laser. J Appl Phys 107(9):094509. doi:10.1063/1.3371802 Thomassen C (1990) Resistances and currents in infinite electrical networks. J Comb Theory Ser. B 49(1):87–102. doi:10.1016/0095-8956(90) Thovex C, Trichet F (2010) Static and semantic social networks analysis: towards a multidimensional convergent model. In: Proceedings of the 22nd international conference on software engineering and knowledge engineering (SEKE 2010). San Francisco Bay, USA, pp 548–552 Wakita K, Tsurumi T (2007) Finding community structure in mega-scale social networks. In: Proceedings of the 16th international conference on world wide web, WWW’07. ACM, New York, pp 1275–1276. doi:10.1145/1242572.1242805 Zhuhadar L, Nasraoui O, Wyatt R, Yang R (2011) Visual knowledge representation of conceptual semantic networks. Soc Netw Anal Min 3: 219–299