Semantic similarity estimation in the biomedical domain: An ontology-based information-theoretic perspective
Tóm tắt
Từ khóa
Tài liệu tham khảo
Patwardhan, 2003, Using measures of semantic relatedness for word sense disambiguation, 241
Leroy, 2005, Effects of information and machine learning algorithms on word sense disambiguation with small datasets, Int J Med Inform, 74, 573, 10.1016/j.ijmedinf.2005.03.013
Budanitsky A, Hirst G. Semantic distance in WordNet: an experimental, application-oriented evaluation of five measures. In: Workshop on WordNet and Other Lexical Resources, Second meeting of the North American Chapter of the Association for Computational Linguistics, Pittsburgh, USA; 2001, p. 10–5.
Lin, 1998, An information-theoretic definition of similarity, 296
Cilibrasi, 2006, The Google similarity distance, IEEE Trans Knowledge Data Eng, 19, 370, 10.1109/TKDE.2007.48
Stevenson, 2005, A semantic approach to IE pattern induction, 379
Sánchez D, Isern D, Millán M. Content annotation for the semantic Web: an automatic Web-based approach, knowledge and information systems, in press, doi:10.1007/s10115-010-0302-3.
Sánchez, 2008, Learning non-taxonomic relationships from web documents for domain ontology construction, Data Knowledge Eng, 63, 600, 10.1016/j.datak.2007.10.001
Sánchez, 2010, A methodology to learn ontological attributes from the Web, Data Knowledge Eng, 69, 573, 10.1016/j.datak.2010.01.006
Aseervatham, 2009, Semi-structured document categorization with a semantic kernel, Pattern Recogn, 42, 2067, 10.1016/j.patcog.2008.10.024
Lu, 2009, Multilingual chief complaint classification for syndromic surveillance: an experiment with Chinese chief complaints, Int J Med Inform, 78, 308, 10.1016/j.ijmedinf.2008.08.004
Papachristoudis, 2010, SoFoCles: feature filtering for microarray classification based on Gene Ontology, J Biomed Inform, 43, 1, 10.1016/j.jbi.2009.06.002
Sugumaran, 2002, Ontologies for conceptual modeling: their creation, use, and management, Data Knowledge Eng, 42, 251, 10.1016/S0169-023X(02)00048-4
Nenadi, 2002, Terminology-driven literature mining and knowledge acquisition in biomedicine, Int J Med Inform, 67, 33, 10.1016/S1386-5056(02)00055-2
Pedersen, 2007, Measures of semantic similarity and relatedness in the biomedical domain, J Biomed Inform, 40, 288, 10.1016/j.jbi.2006.06.004
Bichindaritz, 2006, Concept mining for indexing medical literature, Eng Appl Artif Intell, 19, 411, 10.1016/j.engappai.2006.01.009
Sánchez, 2007, Bringing taxonomic structure to large digital libraries, Int J Metadata, Semantics Ontologies, 2, 112, 10.1504/IJMSO.2007.016805
Jiang JJ, Conrath DW. Semantic similarity based on corpus statistics and lexical taxonomy. In: International Conference on Research in Computational Linguistics, ROCLING X, Taipei, Taiwan; 1997. p. 19–33.
Wu Z, Palmer M. Verb semantics and lexical selection. In: 32nd Annual meeting of the association for computational linguistics. Las Cruces (New Mexico): Association for Computational Linguistics; 1994, p. 133–38.
Resnik, 1995, Using information content to evaluate semantic similarity in a taxonomy, 448
Rada, 1989, Development and application of a metric on semantic nets, IEEE Trans Syst, Man, Cybern, 9, 17, 10.1109/21.24528
Al-Mubaid H, Nguyen HA. A cluster-based approach for semantic similarity in the biomedical domain. In: 28th Annual international conference of the ieee engineering in medicine and biology society. New York (USA): EMBS 2006 IEEE Computer Society; 2006, p. 2713–7.
Caviedes, 2004, Towards the development of a conceptual distance metric for the UMLS, J Biomed Inform, 37, 77, 10.1016/j.jbi.2004.02.001
Batet, 2010, An ontology-based measure to compute semantic similarity in biomedicine, J Biomed Inform, 44, 118, 10.1016/j.jbi.2010.09.002
Fellbaum, 1998
Sánchez, 2010, Web-based semantic similarity: an evaluation in the biomedical domain, Int J Softw Inform, 4, 39
Patwardhan S, Pedersen T. Using WordNet-based context vectors to estimate the semantic relatedness of concepts. In: EACL 2006 Workshop on making sense of sense: bringing computational linguistics and psycholinguistics together, Trento, Italy; 2006. p. 1–8.
Blanchard, 2008, A generic framework for comparing semantic similarities on a subsumption hierarchy, 20
Hubalek, 1982, Coefficient of association and similarity based on binary (presence, absence) data: an evaluation, Biol Rev, 57, 669, 10.1111/j.1469-185X.1982.tb00376.x
Jaccard, 1901, Distribution de la flore alpine dans le bassin des dranses et dans quelques régions voisines, Bull Soc Vaudoise Sci Nat, 34, 241
Dice, 1945, Measures of the amount of ecologic association between species, Ecology, 26, 297, 10.2307/1932409
Caillez, 1996, A contribution to the study of the metric and euclidean structures of dissimilarities, Psychometrika, 61, 241, 10.1007/BF02294337
Gower, 1986, Metric and euclidean properties of dissimilarity coefficients, J Classif, 3, 5, 10.1007/BF01896809
Miller G, Leacock C, Tengi R, Bunker RT. A semantic concordance, workshop on human language technology, HLT 1993, Association for Computational Linguistics, Princeton, New Jersey; 1993, p. 303–8.
Sánchez, 2009, Ontology-driven web-based semantic similarity, J Intell Inform Syst, 35, 383, 10.1007/s10844-009-0103-x
Seco, 2004, An intrinsic information content metric for semantic similarity in WordNet, 1089
Zhou, 2008, A new model of information content for semantic similarity in WordNet, 85
Sánchez, 2011, Ontology-based information content computation, Knowl-based Syst, 24, 297, 10.1016/j.knosys.2010.10.001
Buggenhout, 2005, A novel view on information content of concepts in a large ontology and a view on the structure and the quality of the ontology, Int J Med Inform, 74, 125, 10.1016/j.ijmedinf.2004.03.009
Blank, 2003, Words and concepts in time: towards diachronic cognitive onomasiology, 37
Pirró, 2008, Design, implementation and evaluation of a new semantic similarity metric combining features and intrinsic information content, 1271
Braun-Blanquet, 1932
Ochiai, 1957, Zoogeographic studies on the solenoid fishes found in Japan and its neighbouring regions, Bull Jpn Soc Fish Sci, 22, 526, 10.2331/suisan.22.526
Kulcynski, 1927, Classe des sciences mathématiques et naturelles, Bull Int Acad Polonaise Sci Lett Sér B, 57
Simpson, 1960, Notes on the measurement of faunal resemblance, Am J Sci, 258-A, 300
Sokal RR, Sneath PHA. Principles of numerical taxonomy. San Francisco: W. H. Freeman and Company; 1963. 359p.
Leacock, 1998
Li, 2003, An approach for measuring semantic similarity between words using multiple information sources, IEEE Trans Knowledge Data Eng, 15, 871, 10.1109/TKDE.2003.1209005
Pirró, 2009, A semantic similarity metric combining features and intrinsic information content, Data Knowledge Eng, 68, 1289, 10.1016/j.datak.2009.06.008
Landauer, 1997, A solution to Plato’s problem: the latent semantic analysis theory of the acquisition, induction, and representation of knowledge, Psychol Rev, 104, 211, 10.1037/0033-295X.104.2.211
Miller, 1991, Contextual correlates of semantic similarity, Lang Cogn Process, 6, 1, 10.1080/01690969108406936
Spackman, 2004, SNOMED CT milestones: endorsements are added to already-impressive standards credentials, Healthcare Inform, 21, 54
Ding L, Finin T, Joshi A, Pan R, Cost RS, Peng Y, et al. Swoogle: A Search and Metadata Engine for the Semantic Web. In: Thirteenth ACM international conference on Information and knowledge management, CIKM 2004. Washington (DC, USA): ACM Press; 2004, p. 652–9.
Batet M, Valls A, Gibert K. Improving classical clustering with ontologies. In: 4th World conference of the IASC and 6th conference of the Asian regional section of the IASC on computational statistics and data analysis, IASC 2008. Yokohama (Japan): International Association for Statistical Computing; 2008. p. 137–46.
Nelson, 2001
Al-Mubaid, 2009, Measuring semantic similarity between biomedical concepts within multiple ontologies, IEEE Trans Syst, Man, Cybern, Part C: Appl Rev, 39, 389, 10.1109/TSMCC.2009.2020689
Batet M, Valls A, Gibert K, Sánchez D. Semantic clustering using multiple ontologies. In: 13th International conference on the catalan association for artificial intelligence; 2010. p. 207–16.
Hliaoutakis A. Semantic similarity measures in the MESH ontology and their application to information retrieval on medline. Diploma Thesis, Technical Univ. of Crete (TUC), Dept. of Electronic and Computer Engineering, Crete, Greece; 2005.