Semantic segmentation of mobile mapping point clouds via multi-view label transfer
Tài liệu tham khảo
Barbosa, A., Marinho, T., Martin, N., Hovakimyan, N., 2020. Multi-Stream CNN for Spatial Resource Allocation: A Crop Management Application. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. CVPRW.
Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., Gall, J., 2019. SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences. In: IEEE/CVF International Conf. on Computer Vision. ICCV.
Biasutti, 2019, RIU-Net: Embarrassingly simple semantic segmentation of 3D LiDAR point cloud, CoRR
Biasutti, P., Lepetit, V., Aujol, J., Bredif, M., Bugeau, A., 2019a. LU-Net: An Efficient Network for 3D LiDAR Point Cloud Semantic Segmentation Based on End-to-End-Learned 3D Features and U-Net. In: IEEE/CVF International Conference on Computer Vision Workshops. ICCVW.
Boulch, 2018, SnapNet: 3D point cloud semantic labeling with 2D deep segmentation networks, Comput. Graph., 71, 189, 10.1016/j.cag.2017.11.010
Brédif, M., Vallet, B., Serna, A., Marcotegui, B., Paparoditis, N., 2014. TerraMobilita/IQmulus Urban Point Cloud Classification Benchmark. In: Workshop on Processing Large Geospatial Data. Cardiff, United Kingdom, URL:.
Cai, 2022, Semantic segmentation of terrestrial laser scanning point clouds using locally enhanced image-based geometric representations, IEEE Trans. Geosci. Remote Sens., 60, 1
Chaton, T., Nicolas, C., Horache, S., Landrieu, L., 2020. Torch-Points3D: A Modular Multi-Task Framework for Reproducible Deep Learning on 3D Point Clouds. In: International Conference on 3D Vision, 3DV.
Chen, 2017, Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs, IEEE Trans. Pattern Anal. Mach. Intell., 40, 834, 10.1109/TPAMI.2017.2699184
Chen, L., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In: European Conference on. ECCV.
Chollet, F., 2017. Xception: Deep Learning with Depthwise Separable Convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR.
Choy, C., Gwak, J., Savarese, S., 2019. 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR.
Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., Schiele, B., 2016. The Cityscapes Dataset for Semantic Urban Scene Understanding. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L., 2009. Imagenet: A large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR.
Do, T., Nguyen, H., Nguyen, T., Vu, H., Tran, T., Le, T., 2017. Plant identification using score-based fusion of multi-organ images. In: International Conference on Knowledge and Systems Engineering. KSE.
Dolata, 2017, Double-stream convolutional neural networks for machine vision inspection of natural products, Appl. Artif. Intell., 31, 643, 10.1080/08839514.2018.1428491
Feng, Y., Zhang, Z., Zhao, X., Ji, R., Gao, Y., 2018. GVCNN: Group-View Convolutional Neural Networks for 3D Shape Recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR.
Geiger, 2013, Vision meets robotics: The KITTI dataset, Int. J. Robot. Res., 32, 1231, 10.1177/0278364913491297
Geras, 2017, High-resolution breast cancer screening with multi-view deep convolutional neural networks, CoRR
Hackel, 2017, Semantic3D.net: A new large-scale point cloud classification benchmark
Le, T., Duan, Y., 2018. PointGrid: A Deep Network for 3D Shape Understanding. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR.
Lee, 2018, Multi-organ plant classification based on convolutional and recurrent neural networks, IEEE Trans. Image Process., 27, 4287, 10.1109/TIP.2018.2836321
Lin, 2018, Contactless and partial 3D fingerprint recognition using multi-view deep representation, Pattern Recognit., 83, 314, 10.1016/j.patcog.2018.05.004
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L., 2014. Microsoft COCO: Common objects in context. In: European Conference on Computer Vision. ECCV.
Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR.
Maturana, D., Scherer, S.A., 2015. VoxNet: A 3D Convolutional Neural Network for real-time object recognition. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS.
Milioto, A., Vizzo, I., Behley, J., Stachniss, C., 2019. RangeNet ++: Fast and Accurate LiDAR Semantic Segmentation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS.
Peters, 2019, Automatic generation of large point cloud training datasets using label transfer, 68
Qi, C.R., Su, H., Mo, K., Guibas, L.J., 2017a. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR.
Qi, 2017, PointNet++: Deep hierarchical feature learning on point sets in a metric space
Qin, 2016, 3D change detection–approaches and applications, ISPRS J. Photogramm. Remote Sens., 122, 41, 10.1016/j.isprsjprs.2016.09.013
Robert, D., Vallet, B., Landrieu, L., 2022. Learning Multi-View Aggregation In the Wild for Large-Scale 3D Semantic Segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5575–5584.
Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. MICCAI.
Roynard, 2018, Paris-Lille-3D: A large and high-quality ground-truth urban point cloud dataset for automatic segmentation and classification, Int. J. Robot. Res., 37, 545, 10.1177/0278364918767506
Seeland, 2021, Multi-view classification with convolutional neural networks, PLoS One, 16, 10.1371/journal.pone.0245230
Setio, 2016, Pulmonary nodule detection in CT images: False positive reduction using multi-view convolutional networks, IEEE Trans. Med. Imaging, 35, 1160, 10.1109/TMI.2016.2536809
Singh, 1989, Review article digital change detection techniques using remotely-sensed data, Int. J. Remote Sens., 10, 989, 10.1080/01431168908903939
Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E., 2015. Multi-view convolutional neural networks for 3D shape recognition. In: IEEE International Conference on Computer Vision. ICCV.
Sun, K., Xiao, B., Liu, D., Wang, J., 2019. Deep High-Resolution Representation Learning for Human Pose Estimation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR.
Tang, H., Liu, Z., Zhao, S., Lin, Y., Lin, J., Wang, H., Han, S., 2020. Searching Efficient 3D Architectures with Sparse Point-Voxel Convolution. In: European Conference on Computer Vision. ECCV.
Tchapmi, L.P., Choy, C.B., Armeni, I., Gwak, J., Savarese, S., 2017. SEGCloud: Semantic Segmentation of 3D Point Clouds. In: International Conference on 3D Vision, 3DV.
Thomas, H., Qi, C.R., Deschaud, J.-E., Marcotegui, B., Goulette, F., Guibas, L.J., 2019. KPconv: Flexible and deformable convolution for point clouds. In: IEEE International Conference on Computer Vision. ICCV.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I., 2017. Attention is All you Need. In: Guyon, I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R. (Eds.), Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA. pp. 5998–6008.
Wang, A., Cai, J., Lu, J., Cham, T., 2015. MMSS: Multi-modal Sharable and Specific Feature Learning for RGB-D Object Recognition. In: IEEE International Conference on Computer Vision. ICCV.
Wang, 2018, PointSeg: Real-time semantic segmentation based on 3D LiDAR point cloud, CoRR
Wu, B., Wan, A., Yue, X., Keutzer, K., 2018. SqueezeSeg: Convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D LiDAR point cloud. In: IEEE International Conference on Robotics and Automation. ICRA.
Wu, B., Zhou, X., Zhao, S., Yue, X., Keutzer, K., 2019. SqueezeSegV2: Improved model structure and unsupervised domain adaptation for road-object segmentation from a LiDAR point cloud. In: International Conference on Robotics and Automation. ICRA.
Xie, J., Kiefel, M., Sun, M.-T., Geiger, A., 2016. Semantic instance annotation of street scenes by 3D to 2D label transfer. In: IEEE Conference on Computer Vision and Pattern Recognition. CVPR.
Zhang, 2018, Fusion of images and point clouds for the semantic segmentation of large-scale 3D scenes based on deep learning, ISPRS J. Photogramm. Remote Sens., 143, 85, 10.1016/j.isprsjprs.2018.04.022