Semantic object classes in video: A high-definition ground truth database

Pattern Recognition Letters - Tập 30 Số 2 - Trang 88-97 - 2009
Gabriel J. Brostow1,2, Julien Fauqueur1, Roberto Cipolla1
1Computer Vision Group, University of Cambridge, United Kingdom
2Computer Vision and Geometry Group, ETH Zurich

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agarwala, 2004, Keyframe-based tracking for rotoscoping and animation, ACM Trans. Graphics, 23, 584, 10.1145/1015706.1015764

Bileschi, S., 2006. CBCL Streetscenes: towards scene understanding in still images, Tech. Rep. MIT-CBCL-TR-2006, Massachusetts Institute of Technology. <http://cbcl.mit.edu/software-datasets>.

Bouguet, J.-Y., 2004. Camera Calibration Toolbox for MATLAB. <http://www.vision.caltech.edu/bouguetj/calib_doc>.

Boujou, 2007. 2d3 Ltd. <http://www.2d3.com>.

Burt, 1981, Segmentation and estimation of image region properties through cooperative hierarchical computation, IEEE Syst. Man Cybern. (SMC), 11, 802, 10.1109/TSMC.1981.4308619

Comaniciu, 1997, Robust analysis of feature spaces: Color image segmentation, IEEE Conf. Comput. Vision Pattern Recognition (CVPR), Puerto Rico, 750, 10.1109/CVPR.1997.609410

Dalal, N., Triggs, B., 2005. Histograms of oriented gradients for human detection. In: IEEE Comput. Vision Pattern Recognition (CVPR).

Dalal, N., Triggs, B., Schmid, C., 2006. Human detection using oriented histograms of flow and appearance. In: Eur. Conf. Computer Vision (ECCV).

Deng, 2001, Unsupervised segmentation of color-texture regions in images and video, IEEE Trans. Pattern Anal. Machine Intell. (PAMI), 800, 10.1109/34.946985

Efros, A.A., Berg, A.C., Mori, G., Malik, J., 2003. Recognizing action at a distance. In: IEEE Internat. Conf. Comput. Vision, Nice, France, pp. 726–733.

Facebook homepage, 2007. <http://www.facebook.com/>.

Fauqueur, J., Brostow, G., Cipolla, R., 2007. Assisted video object labeling by joint tracking of regions and keypoints. In: Interactive Comput. Vision Workshop (ICV) held with IEEE ICCV.

Fei-Fei, 2006, One-shot learning of object categories, IEEE Trans. Pattern Anal. Machine Intell. (PAMI), 594, 10.1109/TPAMI.2006.79

Felzenszwalb, 2004, Efficient graph-based image segmentation, Internat. J. Comput. Vision (IJCV), 59, 167, 10.1023/B:VISI.0000022288.19776.77

Griffin, G., Holub, A., Perona, P., 2007. Caltech-256 object category dataset, Tech. Rep. 7694, California Institute of Technology. <http://authors.library.caltech.edu/7694>.

Hoiem, D., Efros, A.A., Hebert, M., 2006. Putting objects in perspective. In: Proc. IEEE Comput. Vision Pattern Recognition (CVPR), vol. 2, pp. 2137–2144.

Lazebnik, S., Schmid, C., Ponce, J., 2006. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: IEEE Comput. Vision Pattern Recognition, vol. 2, pp. 2169–2178.

Leibe, B., Cornelis, N., Cornelis, K., Van Gool, L., 2007. Dynamic 3d scene analysis from a moving vehicle. In: IEEE Comput. Vision Pattern Recognition (CVPR), pp. 1–8.

Leung, 2001, Representing and recognizing the visual appearance of materials using three-dimensional textons, Internat. J. Comput. Vision (IJCV), 43, 29, 10.1023/A:1011126920638

Müller, H., Marchand-Maillet, S., Pun, T., 2002. The truth about Corel – evaluation in image retrieval. In: Proc. Challenge of Image and Video Retrieval (CIVR2002).

Marcotegui, B., Zanoguera, F., Correia, P., Rosa, R., Marques, F., Mech, R., Wollborn, M., 1999. A video object generation tool allowing friendly user interaction. In: IEEE Internat. Conf. Image Processing (ICIP).

Martin, D., Fowlkes, C., Tal, D., Malik, J., 2001. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. Eighth IEEE Internat. Conf. Computer Vision (ICCV), vol. 2, pp. 416–423.

Oliva, 2001, Modeling the shape of the scene: a holistic representation of the spatial envelope, Internat. J. Comput. Vision, 42, 145, 10.1023/A:1011139631724

PASCAL visual object classes challenge (VOC). <http://www.pascal-network.org/challenges/VOC/>.

Patras, 2003, Semi-automatic object-based video segmentation with labeling of color segments, Signal Process.: Image Comm., 18, 51

Piroddi, R., Vlachos, T., 2002. Multiple-feature spatiotemporal segmentation of moving sequences using a rule-based approach. In: BMVC.

Rabinovich, A., Vedaldi, A., Galleguillos, C., Wiewiora, E., Belongie, S., in press. Objects in context. In: IEEE Internat. Conf. on Computer Vision (ICCV).

Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T., 2005. LabelMe: a database and web-based tool for image annotation. In: MIT AI Lab Memo AIM-2005-025.

Shotton, J., Winn, J., Rother, C., Criminisi, A., 2006. Textonboost: joint appearance, shape and context modeling for multi-class object recognition and segmentation. In: Eur. Conf. Comput. Vision (ECCV), Graz, Austria.

Smeaton, 2006, Evaluation campaigns and TRECVid, 321

Snavely, 2006, Photo tourism: exploring photo collections in 3d, 835

The OpenCV Library. <http://www.intel.com/technology/computing/opencv/>.

The PETS, 2007. Benchmark dataset. <http://pets2007.net/>.

Wang, 2005, Interactive video cutout, ACM Trans. Graphics (SIGGRAPH), 585, 10.1145/1073204.1073233

Yao, B., Yang, X., Zhu, S.C., 2007. Introduction to a large-scale general purpose ground truth database: methodology, annotation tool and benchmarks. In: EMMCVPR, pp. 169–183.

Yuan, J., Li, J., Zhang, B., 2007. Exploiting spatial context constraints for automatic image region annotation. In: MULTIMEDIA’07: Proc. 15th Internat. Conf. on Multimedia, ACM, pp. 595–604.