Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes

Springer Science and Business Media LLC - Tập 12 Số 3 - Trang 494-508 - 2018
Yan Zhang1, Jian Xiao1, Qiying Lv1, Shuai Wang2,1
1State Key Laboratory of Digital Manufacturing Equipment and Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
2Flexible Electronics Research Center (FERC), School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Turner J A. Sustainable hydrogen production. Science, 2004, 305(5686): 972–974

Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q X, Santori E A, Lewis N S. Solar water splitting cells. Chemical Reviews, 2010, 110(11): 6446–6473

McCrory C C L, Jung S, Ferrer I M, Chatman S M, Peters J C, Jaramillo T F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. Journal of the American Chemical Society, 2015, 137(13): 4347–4357

Zeng M, Li Y. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(29): 14942–14962

Fang M, Dong G, Wei R, Ho J C. Hierarchical nanostructures: Design for sustainable water splitting. Advanced Energy Materials, 2017, 7(23): 1700559

Cheng N, Stambula S, Wang D, Banis MN, Liu J, Riese A, Xiao B, Li R, Sham T K, Liu L, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nature Communications, 2016, 7. 13638

Chen Z, Ye S, Wilson A R, Ha Y, Wiley B J. Optically transparent hydrogen evolution catalysts made from networks of copperplatinum core-shell nanowires. Energy & Environmental Science, 2014, 7(4): 1461–1467

Wang J H, Cui W, Liu Q, Xing Z C, Asiri A M, Sun X P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Advanced Materials, 2016, 28(2): 215–230

Zhang J, Wang T, Liu P, Liao Z Q, Liu S H, Zhuang X D, Chen M W, Zschech E, Feng X L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nature Communications, 2017, 8. 15437

Wang T, Guo Y, Zhou Z, Chang X, Zheng J, Li X. Ni-Mo nanocatalysts on Ndoped graphite nanotubes for highly efficient electrochemical hydrogen evolution in acid. ACS Nano, 2016, 10(11): 10397–10403

Gong M, Zhou W, Tsai M C, Zhou J G, Guan M Y, Lin M C, Zhang B, Hu Y F,Wang D Y, Yang J, et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nature Communications, 2014, 5. 4695

Jin Y S, Wang H T, Li J J, Yue X, Han Y J, Shen P K, Cui Y. Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting. Advanced Materials, 2016, 28(19): 3785–3790

Tang Y J, Wang Y, Wang X L, Li S L, Huang W, Dong L Z, Liu C H, Li Y F, Lan Y Q. Molybdenum disulfide/nitrogen-doped reduced graphene oxide nanocomposite with enlarged interlayer spacing for electrocatalytic hydrogen evolution. Advanced Energy Materials, 2016, 6(12): 1600116

Wang J, Zhong H X, Wang Z L, Meng F L, Zhang X B. Integrated three-dimensional carbon paper/carbon tubes/cobalt-sulfide sheets as an efficient electrode for overall water splitting. ACS Nano, 2016, 10(2): 2342–2348

Tang C, Cheng N Y, Pu Z H, Xing W, Sun X P. NiSe nanowire film supported on nickel foam: An efficient and stable 3. bifunctional electrode for full water splitting. Angewandte Chemie International Edition, 2015, 54(32): 9351–9355

Chen X S, Liu G B, Zheng W, Feng W, Cao W W, Hu W P, Hu P A. Vertical 2. MoO2/MoSe2 core-shell nanosheet arrays as highperformance electrocatalysts for hydrogen evolution reaction. Advanced Functional Materials, 2016, 26(46): 8537–8544

Yan H J, Tian C G, Wang L, Wu A P, Meng M C, Zhao L, Fu H G. Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction. Angewandte Chemie International Edition, 2015, 127(21): 6423–6427

Shi J L, Pu Z H, Liu Q, Asiri A M, Hu J M, Sun X P. Tungsten nitride nanorods array grown on carbon cloth as an efficient hydrogen evolution cathode at all pH values. Electrochimica Acta, 2015, 154. 345–351

Callejas J F, Read C G, Roske C W, Lewis N S, Schaak R E. Synthesis, characterization, and properties of metal phosphide catalysts for the hydrogen-evolution reaction. Chemistry of Materials, 2016, 28(17): 6017–6044

Yang Y, Fei H L, Ruan G D, Tour J M. Porous cobalt-based thin film as a bifunctional catalyst for hydrogen generation and oxygen generation. Advanced Materials, 2015, 27(20): 3175–3180

Tang C, Xie L S, Wang K Y, Du G, Asiri A M, Luo Y L, Sun X P A. Ni2P nanosheet array integrated on 3. Ni foam: An efficient, robust and reusable monolithic catalyst for the hydrolytic dehydrogenation of ammonia borane toward on-demand hydrogen generation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(32): 12407–12410

Tang C, Zhang R, LuWB,Wang Z, Liu D N, Hao S, Du G, Asiri A M, Sun X P. Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angewandte Chemie International Edition, 2017, 56(3): 842–846

Wu H B, Xia B Y, Yu L, Yu X Y, Lou X W. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nature Communications, 2015, 6(1): 6512

Ma F X, Wu H B, Xia B Y, Xu C Y, Lou X W. Hierarchical β- Mo2C nanotubes organized by ultrathin nanosheets as a highly efficient electrocatalyst for hydrogen production. Angewandte Chemie International Edition, 2015, 54(51): 15395–15399

Vrubel H, Hu X L. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angewandte Chemie International Edition, 2012, 51(51): 12703–12706

Li H, Wen P, Li Q, Dun Q C, Xing J H, Lu C, Adhikari S, Jiang L, Carroll D L, Geyer S M. Earth-abundant iron diboride (FeB2) nanoparticles as highly active bifunctional electrocatalysts for overall water splitting. Advanced Energy Materials, 2017, 7(17): 1700513

Zhang J T, Qu L T, Shi G Q, Liu J Y, Chen J F, Dai L M N. Pcodoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Angewandte Chemie International Edition, 2016, 55(6): 2230–223.

Das R K, Wang Y, Vasilyeva S V, Donoghue E, Pucher I, Kamenov G, Cheng H P, Rinzler A G. Extraordinary hydrogen evolution and oxidation reaction activity from carbon nanotubes and graphitic carbons. ACS Nano, 2014, 8(8): 8447–8456

Carenco S, Portehault D, Boissière C, Mézailles N, Sanchez C. Nanoscaled metal borides and phosphides: Recent developments and perspectives. Chemical Reviews, 2013, 113(10): 7981–8065

Xiao P, Chen W, Wang X. A review of phosphide-based materials for electrocatalytic hydrogen evolution. Advanced Energy Materials, 2015, 5(24): 1500985

Tang C, Qu F L, Asiri A M, Luo Y L, Sun X P. CoP nanoarray: A robust non-noble-metal hydrogen-generating catalyst toward effective hydrolysis of ammonia borane. Inorganic Chemistry Frontiers, 2017, 4(4): 659–662

Popczun E J, McKone J R, Read C G, Biacchi A J, Wiltrout A M, Lewis N S, Schaak R E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. Journal of the American Chemical Society, 2013, 135(25): 9267–9270

McEnaney J M, Crompton J C, Callejas J F, Popczun E J, Biacchi A J, Lewis N S, Schaak R E. Amorphous molybdenum phosphide nanoparticles for electrocatalytic hydrogen evolution. Chemistry of Materials, 2014, 26(16): 4826–4831

Xing Z C, Liu Q, Asiri A M, Sun X P. Closely Interconnected network of molybdenum phosphide nanoparticles: A highly efficient electrocatalyst for generating hydrogen from water. Advanced Materials, 2014, 26(32): 5702–5707

Feng Y, Yu X Y, Paik U Y. Nickel cobalt phosphides quasi-hollow nanocubes as an efficient electrocatalyst for hydrogen evolution in alkaline solution. Chemical Communications, 2016, 52(8): 1633–163.

Liu Q, Tian J Q, Cui W, Jiang P, Cheng N Y, Asiri A M, Sun X P. Carbon nanotubes decorated with CoP nanocrystals: A highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angewandte Chemie International Edition, 2014, 53(26): 6710–6714

Li X L, Liu W, ZhangMY, Zhong Y R,Weng Z, Mi Y Y, Zhou Y, Li M, Cha J J, Tang Z Y, et al. Strong metal-phosphide interactions in core-shell geometry for enhanced electrocatalysis. Nano Letters, 2017, 17(3): 2057–2063

Wang X D, Cao Y, Teng Y, Chen H Y, Xu Y F, Kuang D B. Largearea synthesis of Ni2P honeycomb electrode for highly efficient water splitting. ACS Applied Materials & Interfaces, 2017, 9(38): 32812–32819

Ledendecker M, Calderon S K, Papp C, Steinruck H P, Antonietti M, Shalom M. The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angewandte Chemie International Edition, 2015, 54(42): 12361–12365

Liu T T, Wang K Y, Du G, Asiri A M, Sun X P. Self-supported CoP nanosheet arrays: A nonprecious metal catalyst for efficient hydrogen generation from alkaline NaBH4 solution. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(34): 13053–13057

Liu T T, Xie L S, Yang J H, Kong R M, Du G, Asiri AM, Sun X P, Chen L. Self-standing CoP nanosheets array: A three-dimensional bifunctional catalyst electrode for overall water splitting in both neutral and alkaline media. ChemElectroChem, 2017, 4(8): 1840–184.

Jiang N, You B, Sheng M L, Sun Y J. Electrodeposited cobaltphosphorous- derived films as competent bifunctional catalysts for overall water splitting. Angewandte Chemie International Edition, 2015, 54(21): 6251–6254

Liu Q, Gu S, Li C M. Electrodeposition of nickel-phosphorus nanoparticles film as a Janus electrocatalyst for electro-splitting of water. Journal of Power Sources, 2015, 299. 342–346

Han S, Feng Y L, Zhang F, Yang C Q, Yao Z Q, ZhaoW X, Qiu F, Yang L Y, Yao Y F, Zhuang X D, et al. Metal-phosphide- containing porous carbons derived from an ionic-polymer framework and applied as highly efficient electrochemical catalysts for water splitting. Advanced Functional Materials, 2015, 25(25): 3899–3906

Zhang G,Wang G H, Liu Y, Liu H J, Qu J H, Li J H. Highly active and stable catalysts of phytic acid-derivative transition metal phosphides for full water splitting. Journal of the American Chemical Society, 2016, 138(44): 14686–14693

Zhang T Q, Liu J, Huang L B, Zhang X D, Sun Y G, Liu X C, Bin D S, Chen X, Cao A M, Hu J S, et al. Microbial phosphorous enabled synthesis of phosphides nanocomposites for efficient electrocatalysts. Journal of the American Chemical Society, 2017, 139(32): 11248–11253

Ma T Y, Dai S, Qiao S Z. Self-supported electrocatalysts for advanced energy conversion processes. Materials Today, 2015, 19(5): 265–273

Pi M Y, Wu T L, Zhang D K, Chen S J, Wang S X. Self-supported three-dimensional mesoporous semimetallic WP2 nanowire arrays on carbon cloth as a flexible cathode for efficient hydrogen evolution. Nanoscale, 2016, 8(47): 19779–19786

Li Y J, Zhang H C, Jiang M, Zhang Q, He P L, Sun X M. 3. selfsupported Fe-doped Ni2P nanosheet arrays as bifunctional catalysts for overall water splitting. Advanced Functional Materials, 2017, 27(37): 1702513

Yu J, Li Q Q, Li Y, Xu C Y, Zhen L, Dravid V P, Wu J S. Ternary metal phosphide with triple-layered structure as a low-cost and efficient electrocatalyst for bifunctional water splitting. Advanced Functional Materials, 2016, 26(42): 7644–7651

Zhang Z Y, Liu S S, Xiao J, Wang S. Fiber-based multifunctional nickel phosphide electrodes for flexible energy conversion and storage. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(24): 9691–9699

Shi Y M, Zhang B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chemical Society Reviews, 2016, 45(6): 1529–1541

Prins R, Bussell M E. Metal phosphides: Preparation, characterization and catalytic reactivity. Catalysis Letters, 2012, 142(12): 1413–1436

Strmcnik D, Lopes P P, Genorio B, Stamenkovic V R, Markovic N M. Design principles for hydrogen evolution reaction catalyst materials. Nano Energy, 2016, 29. 29–36

Wang Y, Kong B, Zhao D Y, Wang H T, Selomulya C. Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today, 2017, 15. 26–55

Morales-Guio C G, Stern L A, Hu X L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chemical Society Reviews, 2014, 43(18): 6555–6569

Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355. eaad4998

Vrubel H, Moehl T, Gratzel M, Hu X L. Revealing and accelerating slow electron transport in amorphous molybdenum sulphide particles for hydrogen evolution reaction. Chemical Communications, 2013, 49(79): 8985–8987

Wu T L, Pi MY, Zhang D K, Chen S J. 3. structured porous CoP3 nanoneedle arrays as an efficient bifunctional electrocatalyst for the evolution reaction of hydrogen and oxygen. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(38): 14539–14544

Wang X D, Chen H Y, Xu Y F, Liao J F, Chen B X, Rao H S, Kuang D B, Su C Y. Self-supported NiMoP2 nanowires on carbon cloth as an efficient and durable electrocatalyst for overall water splitting. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(15): 7191–7199

Xiao W, Liu P T, Zhang J Y, SongWD, Feng Y P, Gao D Q, Ding J. Dual-functional N dopants in edges and basal plane of MoS2 nanosheets toward efficient and durable hydrogen evolution. Advanced Energy Materials, 2017, 7(7): 1602086

Li Q, Xing Z C, Asiri A M, Jiang P, Sun X P. Cobalt phosphide nanoparticles film growth on carbon cloth: A high-performance cathode for electrochemical hydrogen evolution. International Journal of Hydrogen Energy, 2014, 39(30): 16806–16811

Wang X G, Li W, Xiong D H, Petrovykh D Y, Liu L F. Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting. Advanced Functional Materials, 2016, 26(23): 4067–4077

Zhang G, Song Y, Zhang H, Xu J, Duan H, Liu J. Radially aligned porous carbon nanotube arrays on carbon fibers: A hierarchical 3. carbon nanostructure for high-performance capacitive energy storage. Advanced Functional Materials, 2016, 26(18): 3012–3020

Xu K, Cheng H, Lv H,Wang J, Liu L, Liu S,Wu X, Chu W,Wu C, Xie Y. Controllable surface reorganization engineering on cobalt phosphide nanowire arrays for efficient alkaline hydrogen evolution reaction. Advanced Materials, 2018, 30(1): 1703322

Yan Y, Xia B Y, Ge X, Liu Z, Fisher A, Wang X. A flexible electrode based on iron phosphide nanotubes for overall water splitting. Chemistry, 2015, 21(50): 18062–18067

Wang A L, He X J, Lu X F, Xu H, Tong Y X, Li G R. Palladiumcobalt nanotube arrays supported on carbon fiber cloth as highperformance flexible electrocatalysts for ethanol oxidation. Angewandte Chemie International Edition, 2015, 54(12): 3669–367.

Tong S S, Wang X J, Li Q C, Han X J. Progress on electrocatalysts of hydrogen evolution reaction based on carbon fiber materials. Chinese Journal of Analytical Chemistry, 2016, 44(9): 1447–1457

Liang Y, Liu Q, Asiri A M, Sun X, Luo Y. Self-supported FeP nanorod arrays: A cost-effective 3. hydrogen evolution cathode with high catalytic activity. ACS Catalysis, 2014, 4(11): 4065–406.

Jiang P, Liu Q, Sun X. NiP2 nanosheet arrays supported on carbon cloth: An efficient 3. hydrogen evolution cathode in both acidic and alkaline solutions. Nanoscale, 2014, 6(22): 13440–13445

Pu Z, Liu Q, Asiri A M, Sun X. Tungsten phosphide nanorod arrays directly grown on carbon cloth: A highly efficient and stable hydrogen evolution cathode at all pH values. ACS Applied Materials & Interfaces, 2014, 6(24): 21874–21879

Zhu W X, Tang C, Liu D N, Wang J L, Asiric A M, Sun X P. A self-standing nanoporous MoP2 nanosheet array: An advanced pHuniversal catalytic electrode for the hydrogen evolution reaction. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(19): 7169–7173

Tian J, Liu Q, Asiri AM, Sun X. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3. hydrogen-evolving cathode over the wide range of pH 0–14. Journal of the American Chemical Society, 2014, 136(21): 7587–7590

Yang X, Lu A Y, Zhu Y, Hedhili M N, Min S X, Huang KW, Han Y, Lin L J. CoP nanosheet assembly grown on carbon cloth: A highly efficient electrocatalyst for hydrogen generation. Nano Energy, 2015, 15. 634–641

Tian J, Liu Q, Liang Y, Xing Z, Asiri A M, Sun X. FeP nanoparticles film grown on carbon cloth: An ultrahighly active 3. hydrogen evolution cathode in both acidic and neutral solutions. ACS Applied Materials & Interfaces, 2014, 6(23): 20579–20584

Streckova M, Mudra E, Orinakova R, Markusova-Buckova L, Sebek M, Kovalcikova A, Sopcak T, Girman V, Dankova Z, Micusik M, et al. Nickel and nickel phosphide nanoparticles embedded in electrospun carbon fibers as favourable electrocatalysts for hydrogen evolution. Chemical Engineering Journal, 2016, 303. 167–181

Ma Y Y, Wu C X, Feng X J, Tan H Q, Yan L K, Liu Y, Kang Z H, Wang E B, Li Y G. Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy & Environmental Science, 2017, 10(3): 788–798

Ye C, Wang M Q, Chen G, Deng Y H, Li L J, Luo H Q, Li N B. One-step CVD synthesis of carbon framework wrapped Co2P as a flexible electrocatalyst for efficient hydrogen evolution. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(17): 7791–7795

Li D Q, Liao Q Y, Ren B W, Jin Q Y, Cui H, Wang X C. A 3Dcomposite structure of FeP nanorods supported by vertically aligned graphene for the high-performance hydrogen evolution reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(22): 11301–11308

Du C, Yang L, Yang F L, Cheng G Z, Luo W. Nest-like NiCoP for highly efficient overall water splitting. ACS Catalysis, 2017, 7(6): 4131–4137

Xiao X, Tao L, Li M, Lv X, Huang D, Jiang X, Pan H, Wang M, Shen Y. Electronic modulation of transition metal phosphide via doping as efficient and pH-universal electrocatalysts for hydrogen evolution reaction. Chemical Science, 2018, 9(7): 1970–1975

Ma M, Zhu G, Xie F, Qu F L, Liu Z, Du G, Asiri A M, Yao Y D, Sun X P. Homologous catalysts based on Fe-doped CoP nanoarrays for high-performance full water splitting under benign conditions. ChemSusChem, 2017, 10(16): 3188–3192

Wang A L, Lin J, Xu H, Tong Y X, Li G R. Ni2P-CoP hybrid nanosheet arrays supported on carbon cloth as an efficient flexible cathode for hydrogen evolution. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(43): 16992–16999

Zhang R, Tang C, Kong R M, Du G, Asiri A M, Chen L, Sun X P. Al-doped CoP nanoarray: A durable water-splitting electrocatalyst with superhigh activity. Nanoscale, 2017, 9(14): 4793–4800

Wang X D, Xu Y F, Rao H S, Xu W J, Chen H Y, Zhang W X, Kuang D B, Su C Y. Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution. Energy & Environmental Science, 2016, 9(4): 1468–1475

Zhang R, Wang X, Yu S, Wen T, Zhu X W, Yang F X, Sun X N, Wang X K, Hu W P. Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Advanced Materials, 2017, 29(9): 1605502

Zhuo J, Cabán-Acevedo M, Liang H, Samad L, Ding Q, Fu Y P, Li M X, Jin S. High-performance electrocatalysis for hydrogen evolution reaction using Se-doped pyrite-phase nickel diphosphide nanostructures. ACS Catalysis, 2015, 5(11): 6355–6361

Han A L, Jin S, Chen H L, Ji H X, Sun Z J, Du P W. A robust hydrogen evolution catalyst based on crystalline nickel phosphide nanoflakes on three-dimensional graphene/nickel foam: high performance for electrocatalytic hydrogen production from pH0. 14. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(5): 1941–1946

Read C G, Callejas J F, Holder C F, Schaak R E. General strategy for the synthesis of transition metal phosphide films for electrocatalytic hydrogen and oxygen evolution. ACS Applied Materials & Interfaces, 2016, 8(20): 12798–12803

Pu Z, Amiinu I S,Mu S. In situ fabrication of tungsten diphosphide nanoparticles on tungsten foil: A hydrogen-evolution cathode for a wide pH range. Energy Technology, 2016, 4(9): 1030–1034

Bai Y J, Zhang H J, Fang L, Liu L, Qiu H J,Wang Y. Novel peapod array of Ni2P@graphitized carbon fiber composites growing on Ti substrate: A superior material for Li-ion batteries and the hydrogen evolution reaction. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(10): 5434–5441

Liu R W, Gu S, Du H F, Li C M. Controlled synthesis of FeP nanorod arrays as highly efficient hydrogen evolution cathode. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(41): 17263–17267

Pu Z, Liu Q, Jiang P, Asiri AM, Obaid A Y, Sun X. CoP nanosheet arrays supported on a Ti plate: An efficient cathode for electrochemical hydrogen evolution. Chemistry of Materials, 2014, 26(15): 4326–4329

Liu T T, Ma X, Liu D N, Hao S, Du G, Ma Y J, Asiri A M, Sun X P, Chen L. Mn doping of CoP nanosheets array: An efficient electrocatalyst for hydrogen evolution reaction with enhanced activity at all pH values. ACS Catalysis, 2017, 7(1): 98–102

Zhang L, Ren X, Guo X, Liu Z, Asiri A M, Li B H, Chen L, Sun X P. Efficient hydrogen evolution electrocatalysis at alkaline pH by interface engineering of Ni2P-CeO2. Inorganic Chemistry, 2018, 57(2): 548–552

Pu Z H, Liu Q, Tang C, Asiri A M, Sun X P. Ni2P nanoparticle films supported on a Ti plate as an efficient hydrogen evolution cathode. Nanoscale, 2014, 6(19): 11031–11034

Pu Z, Amiinu I S,Wang M, Yang Y, Mu S. Semimetallic MoP2: An active and stable hydrogen evolution electrocatalyst over the whole pH range. Nanoscale, 2016, 8(16): 8500–8504

Pu Z, Tang C, Luo Y. Ferric phosphide nanoparticles film supported on titanium plate: A high-performance hydrogen evolution cathode in both acidic and neutral solutions. International Journal of Hydrogen Energy, 2015, 40(15): 5092–5098

Jiang P, Liu Q, Liang Y, Tian J, Asiri A, Sun X. A cost-effective 3. hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angewandte Chemie, 2014, 53(47): 12855–12859

Zhou D, He L, Zhu W, Hou X, Wang K, Du G, Zheng C, Sun X, Asiri A M. Interconnected urchin-like cobalt phosphide microspheres film for highly efficient electrochemical hydrogen evolution in both acidic and basic media. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(26): 10114–10117

Niu Z, Jiang J, Ai L. Porous cobalt phosphide nanorod bundle arrays as hydrogen-evolving cathodes for electrochemical water splitting. Electrochemistry Communications, 2015, 56. 56–60

Wu L, Pu Z, Tu Z, Amiinu I S, Liu S, Wang P, Mu S. Integrated design and construction of WP/W nanorod array electrodes toward efficient hydrogen evolution reaction. Chemical Engineering Journal, 2017, 327. 705–712

Son C Y, Kwak I H, Lim Y R, Park J. FeP and FeP2 nanowires for efficient electrocatalytic hydrogen evolution reaction. Chemical Communications, 2016, 52(13): 2819–2822

Wei L, Goh K, Birer O, Karahan H, Chang J, Zhai S, Chen X, Chen Y. A hierarchically porous nickel-copper phosphide nano-foam for efficient electrochemical splitting of water. Nanoscale, 2017, 9(13): 4401–4408

Zhang Y, Liu Y W, Ma M, Ren X, Liu Z A, Du G, Asiri A M, Sun X P. A Mn-doped Ni2P nanosheet array: An efficient and durable hydrogen evolution reaction electrocatalyst in alkaline media. Chemical Communications, 2017, 53(80): 11048–11051

Liang H, Gandi A N, Anjum D H, Wang X, Schwingenschlogl U, Alshareef H N. Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Letters, 2016, 16(12): 7718–7725

Tian J, Liu Q, Cheng N, Asiri A M, Sun X. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angewandte Chemie, 2014, 53(36): 9577–9581

Li W, Gao X, Xiong D, Xia F, Liu J, Song W, Xu J, Thalluri S M, Cerqueira M F, Fu X, et al. Vapor-solid synthesis of monolithic singlecrystalline CoP nanowire electrodes for efficient and robust water electrolysis. Chemical Science, 2017, 8(4): 2952–2958

Ma Z, Li R, Wang M, Meng H, Zhang F, Bao X, Tang B, Wang X. Self-supported porous Ni-Fe-P composite as an efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline medium. Electrochimica Acta, 2016, 219. 194–203

Liu T T, Liu D N, Qu F L, Wang D X, Zhang L, Ge R X, Hao S, Ma Y J, Du G, Asiri A M, et al. Enhanced electrocatalysis for energyefficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter. Advanced Energy Materials, 2017, 7(15): 1700020

Zhu Y P, Liu Y P, Ren T Z, Yuan Z Y. Self-supported cobalt phosphide mesoporous nanorod arrays: A flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Advanced Functional Materials, 2015, 25(47): 7337–734.

Wang X, Kolen’ko Y V, Bao X Q, Kovnir K, Liu L. One-step synthesis of self-supported nickel phosphide nanosheet array cathodes for efficient electrocatalytic hydrogen generation. Angewandte Chemie, 2015, 54(28): 8188–8192

Xiao J, Lv Q Y, Zhang Y, Zhang Z Y, Wang S. One-step synthesis of nickel phosphide nanowire array supported on nickel foam with enhanced electrocatalytic water splitting performance. RSC Advances, 2016, 6(109): 107859–107864

Wang X, Kolen’ko Y V, Liu L. Direct solvothermal phosphorization of nickel foam to fabricate integrated Ni2P-nanorods/Ni electrodes for efficient electrocatalytic hydrogen evolution. Chemical Communications, 2015, 51(31): 6738–6741

You B, Jiang N, Sheng M, Bhushan M W, Sun Y. Hierarchically porous urchin-like Ni2P superstructures supported on nickel foam as efficient bifunctional electrocatalysts for overall water splitting. ACS Catalysis, 2015, 6(2): 714–721

Tan Y, Wang H, Liu P, Cheng C, Zhu F, Hirata A, Chen M. 3. nanoporous metal phosphides toward high-efficiency electrochemical hydrogen production. Advanced Materials, 2016, 28(15): 2951–2955

Tan Y, Wang H, Liu P, Shen Y, Cheng C, Hirata A, Fujita T, Tang Z, Chen M. Versatile nanoporous bimetallic phosphides towards electrochemical water splitting. Energy & Environmental Science, 2016, 9(7): 2257–2261

Deng C, Ding F, Li X, Guo Y, Ni W, Yan H, Sun K, Yan Y. Template-preparation of three-dimensional molybdenum phosphide sponge as high performance electrode for hydrogen evolution. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 4(1): 59–66

Kibsgaard J, Tsai C, Chan K, Benck J D, Nørskov J K, Abild- Pedersen F, Jaramillo T F. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy & Environmental Science, 2015, 8(10): 3022–3029

Cheng Y, Guo J, Huang Y, Liao Z, Xiang Z. Ultrastable hydrogen evolution electrocatalyst derived from phosphide postmodified metal-organic frameworks. Nano Energy, 2017, 35. 115–120

Minemawari H, Yamada T, Matsui H, Tsutsumi J Y, Haas S, Chiba R, Kumai R, Hasegawa T. Inkjet printing of single-crystal films. Nature, 2011, 475(7356): 364–367

Chi K, Zhang Z, Xi J, Huang Y, Xiao F, Wang S, Liu Y Q. Freestanding graphene paper supported three-dimensional porous graphene-polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor. ACS Applied Materials & Interfaces, 2014, 6(18): 16312–16319

Pu Z, Amiinu I S, Zhang C, Wang M, Kou Z, Mu S. Phytic acidderivative transition metal phosphides encapsulated in N,P-codoped carbon: An efficicent and durabale hydrogen evolution electrocatalyst in a wide pH range. Nanoscale, 2017, 9(10): 3555–3560