Self-repelling diffusions via an infinite dimensional approach
Tóm tắt
Từ khóa
Tài liệu tham khảo
Benaïm, M.: Vertex-reinforced random walks and a conjecture of Pemantle. Ann. Probab. 25, 361–392 (1997)
Benaïm, M., Gauthier, C.E.: Self repelling diffusions on a Riemannian manifolds. math.PR. arXiv preprint arXiv:1505.05664
Benaïm, M., Raimond, O.: Self-interacting diffusions II: convergence in law ann. Inst. Henri Poincaré 6, 1043–1055 (2003)
Benaïm, M., Raimond, O.: Self-interacting diffusions III: symetric interactions. Ann. Probab. 33(5), 1717–1759 (2005)
Benaïm, M., Ledoux, M., Raimond, O.: Self-interacting diffusions. Probab. Theor. Relat. Field 122, 1–41 (2002)
Coppersmith, D., Diaconis, P.: Random walk with reinforcement (1987) (unpublished)
Cranston, M., Le Jan, Y.: Self-attracting diffusions : two cas studies. Math. Ann. 303, 87–93 (1995)
Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)
Da Prato, G., Zabczyk, J.: Ergodicity for Infinite Dimensional Systems. London Mathematical Society Lecture Notes. Cambridge University Press, Cambridge (1996)
Dolbeault, J., Klar, A., Mouhot, C., Schmeiser, C.: Exponential rate of convergence to equilibrium for a model describing fiber lay-down processes. Appl. Math. Res. Exp. 2013(2), 165–175 (2013)
Durrett, R.T., Rogers, L.C.G.: Asymptotic behavior of Brownian polymers. Probab. Theor. Relat. Field 92(3), 337–349 (1992)
Hairer, M.: Ergodic theory for Stochastic PDEs. Lecture notes to a LMS-EPSRC Short course on Stochastic Partial Differential Equations held at Imperial College London. http://www.hairer.org/Teaching.html (2008)
Kallenberg, O.: Foundations of Modern Probability. Springer, Berlin (1997)
Norris, J.R., Rogers, L.C.G., Williams, D.: Self-avoiding random walk : a Brownian motion model with local time drift. Probab. Theor. Relat. Fields 74(2), 271–287 (1987)
Pemantle, R.: Random processes with reinforcement. MIT doctoral dissertation (1988)
Prevot, C.: A Concise Course on Stochastic Partial Differential Equations. Monograph, Lectures Notes in Mathematics. Springer, Berlin (2006)
Raimond, O.: Self attracting diffusions: case of the constant interaction. Probab. Theor. Relat. Fields 107, 177–196 (1997)