Self-reliant cooling of ultracold atoms
Tài liệu tham khảo
Scopa, 2019, Exact solution of time-dependent Lindblad equations with closed algebras, Phys. Rev. A, 99, 10.1103/PhysRevA.99.022105
Ono, 2020, Analog of a quantum heat engine using a single-spin qubit, Phys. Rev. Lett., 125, 10.1103/PhysRevLett.125.166802
Chi, 2012, Refrigeration effect in a single-level quantum dot with thermal bias, Appl. Phys. Lett., 100, 10.1063/1.4720093
Levy, 2012, Quantum absorption refrigerator, Phys. Rev. Lett., 108, 10.1103/PhysRevLett.108.070604
Uzdin, 2014, The multilevel four-stroke swap engine and its environment, New J. Phys., 16, 10.1088/1367-2630/16/9/095003
Linden, 2010, How small can thermal machines be? The smallest possible refrigerator, Phys. Rev. Lett., 105, 10.1103/PhysRevLett.105.130401
Skrzypczyk, 2011, The smallest refrigerators can reach maximal efficiency, J. Phys. A, 44, 10.1088/1751-8113/44/49/492002
Venturelli, 2013, Minimal self-contained quantum refrigeration machine based on four quantum dots, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.256801
Esposito, 2009, Thermoelectric efficiency at maximum power in a quantum dot, Europhys. Lett., 85, 60010, 10.1209/0295-5075/85/60010
Qutubuddin, 2021, Incoherent control of optical signals: Quantum-heat-engine approach, Phys. Rev. Res, 3, 10.1103/PhysRevResearch.3.023029
Barrios, 2017, Role of quantum correlations in light-matter quantum heat engines, Phys. Rev. A, 96, 10.1103/PhysRevA.96.052119
De, 2016, Thermoelectric study of dissipative quantum-dot heat engines, Phys. Rev. B, 94, 10.1103/PhysRevB.94.165416
Levy, 2012, Quantum refrigerators and the third law of thermodynamics, Phys. Rev. E, 85, 10.1103/PhysRevE.85.061126
Du, 2018, Nonequilibrium quantum absorption refrigerator, New J. Phys., 20, 10.1088/1367-2630/aac688
Correa, 2014, Optimal performance of endoreversible quantum refrigerators, Phys. Rev. E, 90, 10.1103/PhysRevE.90.062124
Roßnagel, 2016, A single-atom heat engine, Science, 352, 325, 10.1126/science.aad6320
Du, 2020, Quantum-dot heat engines with irreversible heat transfer, Phys. Rev. Res., 2, 10.1103/PhysRevResearch.2.013259
Su, 2019, Thermodynamic coupling rule for quantum thermoelectric devices, J. Phys. D: Appl. Phys., 53
Kolář, 2012, Quantum bath refrigeration towards absolute zero: Challenging the unattainability principle, Phys. Rev. Lett., 109, 10.1103/PhysRevLett.109.090601
Klaers, 2012, Statistical physics of Bose–Einstein-condensed light in a dye microcavity, Phys. Rev. Lett., 108, 10.1103/PhysRevLett.108.160403
Pathria, 1996
Biswas, 2012, Thermodynamics of quantum gases for the entire range of temperature, Eur. J. Phys., 33, 1527, 10.1088/0143-0807/33/6/1527
Biswas, 2015, Energy fluctuation and discontinuity of specific heat, J. Stat. Mech-Theory E., 2015, 10.1088/1742-5468/2015/03/P03013
Sotnikov, 2017, Chemical potentials and thermodynamic characteristics of ideal Bose-and Fermi-gases in the region of quantum degeneracy, Low Temp. Phys., 43, 144, 10.1063/1.4975807
Cowan, 2019, On the chemical potential of ideal Fermi and Bose gases, J. Low Temp. Phys., 197, 412, 10.1007/s10909-019-02228-0
Krinner, 2013, Superfluidity with disorder in a thin film of quantum gas, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.100601
Brantut, 2012, Conduction of ultracold fermions through a mesoscopic channel, Science, 337, 1069, 10.1126/science.1223175
Brantut, 2013, A thermoelectric heat engine with ultracold atoms, Science, 342, 713, 10.1126/science.1242308
Nietner, 2014, Transport with ultracold atoms at constant density, Phys. Rev. A, 89, 10.1103/PhysRevA.89.013605
Gallego-Marcos, 2014, Nonequilibrium relaxation transport of ultracold atoms, Phys. Rev. A, 90, 10.1103/PhysRevA.90.033614
Cowan, 2005
Schaller, 2014
Breuer, 2007
Walls, 1994
Nietner, 2014
Lindblad, 1976, On the generators of quantum dynamical semigroups, Commun. Math. Phys., 48, 119, 10.1007/BF01608499
Gorini, 1976, Completely positive dynamical semigroups of N-level systems, J. Math. Phys., 17, 821, 10.1063/1.522979
Covito, 2018, Transient charge and energy flow in the wide-band limit, J. Chem. Theory Comput., 14, 2495, 10.1021/acs.jctc.8b00077
Baumgratz, 2014, Quantifying coherence, Phys. Rev. Lett., 113, 10.1103/PhysRevLett.113.140401