Self-reactivity of a calcined palygorskite-bearing marlstone for potential use as supplementary cementitious material
Tài liệu tham khảo
Almenares, 2017, Industrial calcination of kaolinitic clays to make reactive pozzolans, vol. 6, 225
Alujas, 2015, Pozzolanic reactivity of low grade kaolinitic clays: Influence of calcination temperature and impact of calcination products on OPC hydration, Appl. Clay Sci., 108, 94, 10.1016/j.clay.2015.01.028
Amran, 2020, Clean production and properties of geopolymer concrete; a review, J. Clean. Prod., 251, 10.1016/j.jclepro.2019.119679
Andersen, 2003, Incorporation of aluminum in the calcium silicate hydrate (C−S−H) of hydrated portland cements: a high-field 27 Al and 29 Si MAS NMR investigation, Inorg. Chem., 42, 2280, 10.1021/ic020607b
Andersen, 2004, Characterization of white Portland cement hydration and the C-S-H structure in the presence of sodium aluminate by 27Al and 29Si MAS NMR spectroscopy, Cem. Concr. Res., 34, 857, 10.1016/j.cemconres.2003.10.009
Andersen, 2006, A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy, Cem. Concr. Res., 36, 3, 10.1016/j.cemconres.2005.04.010
Avet, 2016, Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays, Cem. Concr. Res., 85, 1, 10.1016/j.cemconres.2016.02.015
Behim, 2002
Bernard, 2017, Formation of magnesium silicate hydrates (M-S-H), vol. 99, 142
Boudriche, 2011, Effect of acid treatment on surface properties evolution of attapulgite clay: an application of inverse gas chromatography, Colloids Surf. A Physicochem. Eng. Asp., 392, 45, 10.1016/j.colsurfa.2011.09.031
Brown, 1987
Cancio Díaz, 2017, Limestone calcined clay cement as a low-carbon solution to meet expanding cement demand in emerging economies, Dev. Eng., 2, 82, 10.1016/j.deveng.2017.06.001
Cherki El Idrissi, 2018, Alkali-activated grouts with incorporated fly ash: from NMR analysis to mechanical properties, Mater. Today Commun., 14, 225, 10.1016/j.mtcomm.2018.01.012
Cherney, 1987, Cement growth failure mechanism in porcelain suspension insulators, vol. 2, 249
Cizer, O., Balen, K.V., Gemert, D.V., Elsen, J., n.d. Carbonation and Hydration of Mortars with Calcium Hydroxide and Calcium Silicate Binders 13.
Dai, 2014, Aluminum INCORPORATION in the C–S–H phase of white Portland cement–metakaolin blends studied by 27Al and 29Si MAS NMR spectroscopy, J. Am. Ceram. Soc., 97, 2662, 10.1111/jace.13006
Doebelin, 2015, Profex: a graphical user interface for the Rietveld refinement program BGMN, J. Appl. Crystallogr., 48, 1573, 10.1107/S1600576715014685
El-Diadamony, 2018, Hydration and characteristics of metakaolin pozzolanic cement pastes, HBRC J., 14, 150, 10.1016/j.hbrcj.2015.05.005
Fernandez, 2011, The origin of the pozzolanic activity of calcined clay minerals: a comparison between kaolinite, illite and montmorillonite, Cem. Concr. Res., 41, 113, 10.1016/j.cemconres.2010.09.013
Florian, 2012, Elucidation of the Al/Si ordering in Gehlenite Ca2Al2SiO7 by combined 29Si and 27Al NMR spectroscopy/quantum chemical calculations, Chem. Mater., 24, 4068, 10.1021/cm3016935
Gao, 2017, Apply 29Si, 27Al MAS NMR and selective dissolution in identifying the reaction degree of alkali activated slag-fly ash composites, Ceram. Int., 43, 12408, 10.1016/j.ceramint.2017.06.108
Garg, 2014, Thermal activation of a pure montmorillonite clay and its reactivity in cementitious systems, J. Phys. Chem. C, 118, 11464, 10.1021/jp502529d
Garg, 2016, Pozzolanic reactivity of a calcined interstratified illite/smectite (70/30) clay, Cem. Concr. Res., 79, 101, 10.1016/j.cemconres.2015.08.006
Haha, 2011, Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — part I: effect of MgO, Cem. Concr. Res., 41, 955, 10.1016/j.cemconres.2011.05.002
Hu, 2019, Compressive strength, pore structure and chloride transport properties of alkali-activated slag/fly ash mortars, Cem. Concr. Compos., 104, 10.1016/j.cemconcomp.2019.103392
Hughes, 2009, Roman cements — Belite cements calcined at low temperature, Cem. Concr. Res., 39, 77, 10.1016/j.cemconres.2008.11.010
Huntzinger, 2009, A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies, J. Clean. Prod., 17, 668, 10.1016/j.jclepro.2008.04.007
Ipavec, 2011, Carboaluminate phases formation during the hydration of calcite-containing portland cement: carboaluminate phase formation, J. Am. Ceram. Soc., 94, 1238, 10.1111/j.1551-2916.2010.04201.x
Kaminskas, 2020, Smectite clay waste as an additive for Portland cement, Cem. Concr. Compos., 113, 10.1016/j.cemconcomp.2020.103710
Kunhi Mohamed, 2020, The atomic-level structure of cementitious calcium aluminate silicate hydrate, J. Am. Chem. Soc., 142, 11060, 10.1021/jacs.0c02988
Lippmaa, 1980, Structural studies of silicates by solid-state high-resolution silicon-29 NMR, J. Am. Chem. Soc., 102, 4889, 10.1021/ja00535a008
Magi, 1984, Solid-state high-resolution silicon-29 chemical shifts in silicates, J. Phys. Chem., 88, 1518, 10.1021/j150652a015
Massiot, 2002, Modelling one- and two-dimensional solid-state NMR spectra: Modelling 1D and 2D solid-state NMR spectra, Magn. Reson. Chem., 40, 70, 10.1002/mrc.984
Mikulčić, 2016, Reducing greenhouse gasses emissions by fostering the deployment of alternative raw materials and energy sources in the cleaner cement manufacturing process, J. Clean. Prod., 136, 119, 10.1016/j.jclepro.2016.04.145
Myers, 2013, Generalized structural description of calcium–sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model, Langmuir, 29, 5294, 10.1021/la4000473
Pardal, 2012, 27Al and 29Si solid-state NMR characterization of calcium-aluminosilicate-hydrate, Inorg. Chem., 51, 1827, 10.1021/ic202124x
Poussardin, 2020, Potential for calcination of a palygorskite-bearing argillaceous carbonate, Appl. Clay Sci., 198, 10.1016/j.clay.2020.105846
Prikhod’ko, 2001, 74, 6
Richardson, 1993, The incorporation of minor and trace elements into calcium silicate hydrate (C-S-H) gel in hardened cement pastes, Cem. Concr. Res., 23, 131, 10.1016/0008-8846(93)90143-W
Scrivener, 2018, Calcined clay limestone cements (LC3), Cem. Concr. Res., 114, 49, 10.1016/j.cemconres.2017.08.017
Shoval, 1988, Mineralogical changes upon heating calcitic and dolomitic marl rocks, Thermochim. Acta, 135, 243, 10.1016/0040-6031(88)87393-3
Skibsted, 1995, Quantification of calcium silicate phases in Portland cements by 29Si MAS NMR spectroscopy, J. Chem. Soc. Faraday Trans., 91, 4423, 10.1039/ft9959104423
Taylor-Lange, 2014, The effect of zinc oxide additions on the performance of calcined sodium montmorillonite and illite shale supplementary cementitious materials, Cem. Concr. Compos., 53, 127, 10.1016/j.cemconcomp.2014.06.008
Tironi, 2013, Assessment of pozzolanic activity of different calcined clays, Cem. Concr. Compos., 37, 319, 10.1016/j.cemconcomp.2013.01.002
Van Balen, 1994, Modelling lime mortar carbonation, Mater. Struct., 27, 393, 10.1007/BF02473442
Verganelaki, A., Maravelaki, N.-P., Budak, M., n.d. Calcined Clays and Limestone as Hydraulic Binders 9.
Yao, 2015, A comprehensive review on the applications of coal fly ash, Earth Sci. Rev., 141, 105, 10.1016/j.earscirev.2014.11.016
Yazıcı, 2010, Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag, Cem. Concr. Compos., 32, 639, 10.1016/j.cemconcomp.2010.07.005
Zhao, 2020, Microstructure of cement paste incorporating high volume of low-grade metakaolin, Cem. Concr. Compos., 106, 10.1016/j.cemconcomp.2019.103453