Self-reactivity of a calcined palygorskite-bearing marlstone for potential use as supplementary cementitious material

Applied Clay Science - Tập 216 - Trang 106372 - 2022
Victor Poussardin1,2,3, Michael Paris2, William Wilson3, Arezki Tagnit-Hamou3, Dimitri Deneele1,2
1GERS-GIE, Univ Gustave Eiffel, IFSTTAR, F-44344 Bouguenais, France
2Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
3Université de Sherbrooke, Sherbrooke, QC, Canada

Tài liệu tham khảo

Almenares, 2017, Industrial calcination of kaolinitic clays to make reactive pozzolans, vol. 6, 225 Alujas, 2015, Pozzolanic reactivity of low grade kaolinitic clays: Influence of calcination temperature and impact of calcination products on OPC hydration, Appl. Clay Sci., 108, 94, 10.1016/j.clay.2015.01.028 Amran, 2020, Clean production and properties of geopolymer concrete; a review, J. Clean. Prod., 251, 10.1016/j.jclepro.2019.119679 Andersen, 2003, Incorporation of aluminum in the calcium silicate hydrate (C−S−H) of hydrated portland cements: a high-field 27 Al and 29 Si MAS NMR investigation, Inorg. Chem., 42, 2280, 10.1021/ic020607b Andersen, 2004, Characterization of white Portland cement hydration and the C-S-H structure in the presence of sodium aluminate by 27Al and 29Si MAS NMR spectroscopy, Cem. Concr. Res., 34, 857, 10.1016/j.cemconres.2003.10.009 Andersen, 2006, A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy, Cem. Concr. Res., 36, 3, 10.1016/j.cemconres.2005.04.010 Avet, 2016, Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays, Cem. Concr. Res., 85, 1, 10.1016/j.cemconres.2016.02.015 Behim, 2002 Bernard, 2017, Formation of magnesium silicate hydrates (M-S-H), vol. 99, 142 Boudriche, 2011, Effect of acid treatment on surface properties evolution of attapulgite clay: an application of inverse gas chromatography, Colloids Surf. A Physicochem. Eng. Asp., 392, 45, 10.1016/j.colsurfa.2011.09.031 Brown, 1987 Cancio Díaz, 2017, Limestone calcined clay cement as a low-carbon solution to meet expanding cement demand in emerging economies, Dev. Eng., 2, 82, 10.1016/j.deveng.2017.06.001 Cherki El Idrissi, 2018, Alkali-activated grouts with incorporated fly ash: from NMR analysis to mechanical properties, Mater. Today Commun., 14, 225, 10.1016/j.mtcomm.2018.01.012 Cherney, 1987, Cement growth failure mechanism in porcelain suspension insulators, vol. 2, 249 Cizer, O., Balen, K.V., Gemert, D.V., Elsen, J., n.d. Carbonation and Hydration of Mortars with Calcium Hydroxide and Calcium Silicate Binders 13. Dai, 2014, Aluminum INCORPORATION in the C–S–H phase of white Portland cement–metakaolin blends studied by 27Al and 29Si MAS NMR spectroscopy, J. Am. Ceram. Soc., 97, 2662, 10.1111/jace.13006 Doebelin, 2015, Profex: a graphical user interface for the Rietveld refinement program BGMN, J. Appl. Crystallogr., 48, 1573, 10.1107/S1600576715014685 El-Diadamony, 2018, Hydration and characteristics of metakaolin pozzolanic cement pastes, HBRC J., 14, 150, 10.1016/j.hbrcj.2015.05.005 Fernandez, 2011, The origin of the pozzolanic activity of calcined clay minerals: a comparison between kaolinite, illite and montmorillonite, Cem. Concr. Res., 41, 113, 10.1016/j.cemconres.2010.09.013 Florian, 2012, Elucidation of the Al/Si ordering in Gehlenite Ca2Al2SiO7 by combined 29Si and 27Al NMR spectroscopy/quantum chemical calculations, Chem. Mater., 24, 4068, 10.1021/cm3016935 Gao, 2017, Apply 29Si, 27Al MAS NMR and selective dissolution in identifying the reaction degree of alkali activated slag-fly ash composites, Ceram. Int., 43, 12408, 10.1016/j.ceramint.2017.06.108 Garg, 2014, Thermal activation of a pure montmorillonite clay and its reactivity in cementitious systems, J. Phys. Chem. C, 118, 11464, 10.1021/jp502529d Garg, 2016, Pozzolanic reactivity of a calcined interstratified illite/smectite (70/30) clay, Cem. Concr. Res., 79, 101, 10.1016/j.cemconres.2015.08.006 Haha, 2011, Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — part I: effect of MgO, Cem. Concr. Res., 41, 955, 10.1016/j.cemconres.2011.05.002 Hu, 2019, Compressive strength, pore structure and chloride transport properties of alkali-activated slag/fly ash mortars, Cem. Concr. Compos., 104, 10.1016/j.cemconcomp.2019.103392 Hughes, 2009, Roman cements — Belite cements calcined at low temperature, Cem. Concr. Res., 39, 77, 10.1016/j.cemconres.2008.11.010 Huntzinger, 2009, A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies, J. Clean. Prod., 17, 668, 10.1016/j.jclepro.2008.04.007 Ipavec, 2011, Carboaluminate phases formation during the hydration of calcite-containing portland cement: carboaluminate phase formation, J. Am. Ceram. Soc., 94, 1238, 10.1111/j.1551-2916.2010.04201.x Kaminskas, 2020, Smectite clay waste as an additive for Portland cement, Cem. Concr. Compos., 113, 10.1016/j.cemconcomp.2020.103710 Kunhi Mohamed, 2020, The atomic-level structure of cementitious calcium aluminate silicate hydrate, J. Am. Chem. Soc., 142, 11060, 10.1021/jacs.0c02988 Lippmaa, 1980, Structural studies of silicates by solid-state high-resolution silicon-29 NMR, J. Am. Chem. Soc., 102, 4889, 10.1021/ja00535a008 Magi, 1984, Solid-state high-resolution silicon-29 chemical shifts in silicates, J. Phys. Chem., 88, 1518, 10.1021/j150652a015 Massiot, 2002, Modelling one- and two-dimensional solid-state NMR spectra: Modelling 1D and 2D solid-state NMR spectra, Magn. Reson. Chem., 40, 70, 10.1002/mrc.984 Mikulčić, 2016, Reducing greenhouse gasses emissions by fostering the deployment of alternative raw materials and energy sources in the cleaner cement manufacturing process, J. Clean. Prod., 136, 119, 10.1016/j.jclepro.2016.04.145 Myers, 2013, Generalized structural description of calcium–sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model, Langmuir, 29, 5294, 10.1021/la4000473 Pardal, 2012, 27Al and 29Si solid-state NMR characterization of calcium-aluminosilicate-hydrate, Inorg. Chem., 51, 1827, 10.1021/ic202124x Poussardin, 2020, Potential for calcination of a palygorskite-bearing argillaceous carbonate, Appl. Clay Sci., 198, 10.1016/j.clay.2020.105846 Prikhod’ko, 2001, 74, 6 Richardson, 1993, The incorporation of minor and trace elements into calcium silicate hydrate (C-S-H) gel in hardened cement pastes, Cem. Concr. Res., 23, 131, 10.1016/0008-8846(93)90143-W Scrivener, 2018, Calcined clay limestone cements (LC3), Cem. Concr. Res., 114, 49, 10.1016/j.cemconres.2017.08.017 Shoval, 1988, Mineralogical changes upon heating calcitic and dolomitic marl rocks, Thermochim. Acta, 135, 243, 10.1016/0040-6031(88)87393-3 Skibsted, 1995, Quantification of calcium silicate phases in Portland cements by 29Si MAS NMR spectroscopy, J. Chem. Soc. Faraday Trans., 91, 4423, 10.1039/ft9959104423 Taylor-Lange, 2014, The effect of zinc oxide additions on the performance of calcined sodium montmorillonite and illite shale supplementary cementitious materials, Cem. Concr. Compos., 53, 127, 10.1016/j.cemconcomp.2014.06.008 Tironi, 2013, Assessment of pozzolanic activity of different calcined clays, Cem. Concr. Compos., 37, 319, 10.1016/j.cemconcomp.2013.01.002 Van Balen, 1994, Modelling lime mortar carbonation, Mater. Struct., 27, 393, 10.1007/BF02473442 Verganelaki, A., Maravelaki, N.-P., Budak, M., n.d. Calcined Clays and Limestone as Hydraulic Binders 9. Yao, 2015, A comprehensive review on the applications of coal fly ash, Earth Sci. Rev., 141, 105, 10.1016/j.earscirev.2014.11.016 Yazıcı, 2010, Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag, Cem. Concr. Compos., 32, 639, 10.1016/j.cemconcomp.2010.07.005 Zhao, 2020, Microstructure of cement paste incorporating high volume of low-grade metakaolin, Cem. Concr. Compos., 106, 10.1016/j.cemconcomp.2019.103453