Self-powered electrochemical wide-band photodetectors using ZrO2@TiO2 nanorod arrays modified with single-walled carbon nanotubes

Renrong Zheng1,2, Zhen Wang1,2, Na Wang1,2, Zan Ding1,2, Tongxin Jiang1,2, Lifeng Zhang3, Shichao Liu4, Haisheng San1,2, Xin Li3
1Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
2Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, China
3China Institute of Atomic Energy, Beijing 102413, China
4Shanghai Institute of Space Power-Sources, Shanghai 200245, China

Tài liệu tham khảo

Zhou, 2016, An overview on emerging photoelectrochemical self-powered ultraviolet photodetectors, Nanoscale, 8, 50, 10.1039/C5NR06167A Sang, 2011, High-temperature ultraviolet detection based on InGaN Schottky photodiodes, Appl. Phys. Lett., 99, 10.1063/1.3615291 Tian, 2017, Self-powered nanoscale photodetectors, Small, 13, 10.1002/smll.201701848 Liu, 2020, High photon absorptivity of quantum dot infrared photodetectors achieved by the surface plasmon effect of metal nanohole array, Nanoscale Res. Lett., 15, 98, 10.1186/s11671-020-03326-9 Chen, 2019, Face-to-face intercrossed ZnO nanorod arrays with extensive NR-NR homojunctions for a highly sensitive and self-powered ultraviolet photodetector, Nano Energy, 65, 10.1016/j.nanoen.2019.104042 Cao, 2011, UV sensor based on TiO2 nanorod arrays on FTO thin film, Sensor. Actuat. B-Chem., 156, 114, 10.1016/j.snb.2011.03.080 Wang, 2013, Multilayer TiO2 nanorod cloth/nanorod array electrode for dye-sensitized solar cells and self-powered UV detectors, Nanoscale, 4, 3350, 10.1039/c2nr30440f Li, 2012, Nanocrystalline TiO2 film based photoelectrochemical cell as self-powered UV-photodetector, Nano Energy, 1, 640, 10.1016/j.nanoen.2012.05.003 Zhang, 2018, High performance self-powered ultraviolet photodetectors based on electrospun gallium nitride nanowires, Appl. Surf. Sci., 452, 43, 10.1016/j.apsusc.2018.04.225 Wang, 2010, Dye-sensitized TiO2 nanotube solar cells with markedly enhanced performance via rational surface engineering, Chem. Mater., 22, 579, 10.1021/cm903164k Zhang, 2017, Organics filled one-dimensional TiO2 nanowires array ultraviolet detector with enhanced photo-conductivity and dark-resistivity, Nanoscale, 9, 9095, 10.1039/C7NR03408C Jhang, 2020, Tunable optical property of plasmonic–polymer nanocomposites composed of multilayer nanocrystal arrays stacked in a homogeneous polymer matrix, ACS Appl. Mater. Interfaces, 12, 51873, 10.1021/acsami.0c17170 Ma, 2021, Enhanced photoelectrochemical cathodic protection performance of MoS2/TiO2 nanocomposites for 304 stainless steel under visible light, J. Mater. Sci. Technol., 64, 21, 10.1016/j.jmst.2020.01.029 Yang, 2013, Electrospun TiO2 nanorods with carbon nanotubes for efficient electron collection in dye-sensitized solar cells, Adv. Mater., 25, 1792, 10.1002/adma.201204256 Lin, 2012, Facile fabrication of TiO2 nanorod arrays for gas sensing using double-layered anodic oxidation method, J. Electrochem. Soc., 159, K5, 10.1149/2.013201jes Xie, 2013, A self-powered UV photodetector based on TiO2 nanorod arrays, Nanoscale Res. Lett., 8, 1, 10.1186/1556-276X-8-188 Cao, 2012, Synthesis and characterization of TiO2/CdS core–shell nanorod arrays and their photoelectrochemical property, J. Alloys Compd., 523, 139, 10.1016/j.jallcom.2012.01.126 Zhao, 2015, Highly dispersed CeO2 on TiO2 nanotube: a synergistic nanocomposite with superior peroxidase-like activity, ACS Appl. Mater. Interfaces, 7, 6451, 10.1021/acsami.5b00023 Ni, 2018, Effect of MgO surface modification on the TiO2 nanowires electrode for self-powered UV photodetectors, ACS Sustain. Chem. Eng., 6, 7265, 10.1021/acssuschemeng.7b04188 Seekaew, 2019, Room temperature toluene gas sensor based on TiO2 nanoparticles decorated 3D graphene-carbon nanotube nanostructures, Sens. Actuat. B Chem., 279, 69, 10.1016/j.snb.2018.09.095 Ahmad, 2018, Graphene oxide incorporated functional materials: a review, Compos. Part B Eng., 145, 270, 10.1016/j.compositesb.2018.02.006 Chen, 2020, Free-standing ZnO nanorod arrays modified with single-walled carbon nanotubes for betavoltaics and photovoltaics, J. Mater. Sci. Technol., 54, 48, 10.1016/j.jmst.2020.03.040 Liu, 2013, Free-standing crystallized TiO2 nanotube membranes, Electrochim. Acta, 93, 80, 10.1016/j.electacta.2013.01.116 Pan, 2014, Electrocatalytic properties of a vertically oriented graphene film and its application as a catalytic counter electrode for dye-sensitized solar cells, J. Mater. Chem. A, 2, 12746, 10.1039/C4TA02028F Xiu, 2018, Ti3+-TiO2/Ce3+-CeO2 Nanosheet heterojunctions as efficient visible-light-driven photocatalysts, Mater. Res. Bull., 100, 191, 10.1016/j.materresbull.2017.12.016 Zheng, 2021, Photocatalytic enhancement using defect-engineered black mesoporous TiO2/CeO2 nanocomposite aerogel, Compos. Part B Eng., 222, 109037, 10.1016/j.compositesb.2021.109037 Tsunekawa, 2005, XPS study of the phase transition in pure zirconium oxide nanocrystallites, Appl. Surf. Sci., 252, 1651, 10.1016/j.apsusc.2005.03.183 Gao, 2018, TiO2 nanorod arrays based self-powered UV photodetector: heterojunction with NiO nanoflakes and enhanced UV photoresponse, ACS Appl. Mater. Interfaces, 10, 11269, 10.1021/acsami.7b18815 Silva, 2016, Characterization of the chemical interaction between single-walled carbon nanotubes and titanium dioxide nanoparticles by thermogravimetric analyses and resonance Raman spectroscopy, Vib. Spectrosc., 86, 103, 10.1016/j.vibspec.2016.06.012 Park, 2013, Photoluminescence enhancement from hybrid structures of metallic single-walled carbon nanotube/ZnO films, Curr. Appl. Phys., 13, 2026, 10.1016/j.cap.2013.09.008 Dhall, 2014, A hydrogen gas sensor using a Pt-sputtered MWCNTs/ZnO nanostructure, Meas. Sci. Technol., 25, 10.1088/0957-0233/25/8/085103 Juan, 2002, Theory of the impedance of electron diffusion and recombination in a thin lay, J. Phys. Chem. B, 106, 325, 10.1021/jp011941g Wang, 2022, Betavoltaic-powered electrochemical cells using TiO2 nanotube arrays incorporated with carbon nanotubes, Compos. Part B Eng., 239, 109952, 10.1016/j.compositesb.2022.109952 Tan, 2019, Heterogeneous photocatalysts: an overview of classic and modern approaches for optical, electronic, and charge dynamics evaluation, Chem. Soc. Rev., 48, 1255, 10.1039/C8CS00882E Wang, 2016, Highly stable perovskite solar cells with an all-carbon hole transport layer, Nanoscale, 8, 11882, 10.1039/C6NR01152G Selinsky, 2013, Quantum dot nanoscale heterostructures for solar energy conversion, Chem. Soc. Rev., 42, 2963, 10.1039/C2CS35374A