Self-powered electrochemical wide-band photodetectors using ZrO2@TiO2 nanorod arrays modified with single-walled carbon nanotubes
Tài liệu tham khảo
Zhou, 2016, An overview on emerging photoelectrochemical self-powered ultraviolet photodetectors, Nanoscale, 8, 50, 10.1039/C5NR06167A
Sang, 2011, High-temperature ultraviolet detection based on InGaN Schottky photodiodes, Appl. Phys. Lett., 99, 10.1063/1.3615291
Tian, 2017, Self-powered nanoscale photodetectors, Small, 13, 10.1002/smll.201701848
Liu, 2020, High photon absorptivity of quantum dot infrared photodetectors achieved by the surface plasmon effect of metal nanohole array, Nanoscale Res. Lett., 15, 98, 10.1186/s11671-020-03326-9
Chen, 2019, Face-to-face intercrossed ZnO nanorod arrays with extensive NR-NR homojunctions for a highly sensitive and self-powered ultraviolet photodetector, Nano Energy, 65, 10.1016/j.nanoen.2019.104042
Cao, 2011, UV sensor based on TiO2 nanorod arrays on FTO thin film, Sensor. Actuat. B-Chem., 156, 114, 10.1016/j.snb.2011.03.080
Wang, 2013, Multilayer TiO2 nanorod cloth/nanorod array electrode for dye-sensitized solar cells and self-powered UV detectors, Nanoscale, 4, 3350, 10.1039/c2nr30440f
Li, 2012, Nanocrystalline TiO2 film based photoelectrochemical cell as self-powered UV-photodetector, Nano Energy, 1, 640, 10.1016/j.nanoen.2012.05.003
Zhang, 2018, High performance self-powered ultraviolet photodetectors based on electrospun gallium nitride nanowires, Appl. Surf. Sci., 452, 43, 10.1016/j.apsusc.2018.04.225
Wang, 2010, Dye-sensitized TiO2 nanotube solar cells with markedly enhanced performance via rational surface engineering, Chem. Mater., 22, 579, 10.1021/cm903164k
Zhang, 2017, Organics filled one-dimensional TiO2 nanowires array ultraviolet detector with enhanced photo-conductivity and dark-resistivity, Nanoscale, 9, 9095, 10.1039/C7NR03408C
Jhang, 2020, Tunable optical property of plasmonic–polymer nanocomposites composed of multilayer nanocrystal arrays stacked in a homogeneous polymer matrix, ACS Appl. Mater. Interfaces, 12, 51873, 10.1021/acsami.0c17170
Ma, 2021, Enhanced photoelectrochemical cathodic protection performance of MoS2/TiO2 nanocomposites for 304 stainless steel under visible light, J. Mater. Sci. Technol., 64, 21, 10.1016/j.jmst.2020.01.029
Yang, 2013, Electrospun TiO2 nanorods with carbon nanotubes for efficient electron collection in dye-sensitized solar cells, Adv. Mater., 25, 1792, 10.1002/adma.201204256
Lin, 2012, Facile fabrication of TiO2 nanorod arrays for gas sensing using double-layered anodic oxidation method, J. Electrochem. Soc., 159, K5, 10.1149/2.013201jes
Xie, 2013, A self-powered UV photodetector based on TiO2 nanorod arrays, Nanoscale Res. Lett., 8, 1, 10.1186/1556-276X-8-188
Cao, 2012, Synthesis and characterization of TiO2/CdS core–shell nanorod arrays and their photoelectrochemical property, J. Alloys Compd., 523, 139, 10.1016/j.jallcom.2012.01.126
Zhao, 2015, Highly dispersed CeO2 on TiO2 nanotube: a synergistic nanocomposite with superior peroxidase-like activity, ACS Appl. Mater. Interfaces, 7, 6451, 10.1021/acsami.5b00023
Ni, 2018, Effect of MgO surface modification on the TiO2 nanowires electrode for self-powered UV photodetectors, ACS Sustain. Chem. Eng., 6, 7265, 10.1021/acssuschemeng.7b04188
Seekaew, 2019, Room temperature toluene gas sensor based on TiO2 nanoparticles decorated 3D graphene-carbon nanotube nanostructures, Sens. Actuat. B Chem., 279, 69, 10.1016/j.snb.2018.09.095
Ahmad, 2018, Graphene oxide incorporated functional materials: a review, Compos. Part B Eng., 145, 270, 10.1016/j.compositesb.2018.02.006
Chen, 2020, Free-standing ZnO nanorod arrays modified with single-walled carbon nanotubes for betavoltaics and photovoltaics, J. Mater. Sci. Technol., 54, 48, 10.1016/j.jmst.2020.03.040
Liu, 2013, Free-standing crystallized TiO2 nanotube membranes, Electrochim. Acta, 93, 80, 10.1016/j.electacta.2013.01.116
Pan, 2014, Electrocatalytic properties of a vertically oriented graphene film and its application as a catalytic counter electrode for dye-sensitized solar cells, J. Mater. Chem. A, 2, 12746, 10.1039/C4TA02028F
Xiu, 2018, Ti3+-TiO2/Ce3+-CeO2 Nanosheet heterojunctions as efficient visible-light-driven photocatalysts, Mater. Res. Bull., 100, 191, 10.1016/j.materresbull.2017.12.016
Zheng, 2021, Photocatalytic enhancement using defect-engineered black mesoporous TiO2/CeO2 nanocomposite aerogel, Compos. Part B Eng., 222, 109037, 10.1016/j.compositesb.2021.109037
Tsunekawa, 2005, XPS study of the phase transition in pure zirconium oxide nanocrystallites, Appl. Surf. Sci., 252, 1651, 10.1016/j.apsusc.2005.03.183
Gao, 2018, TiO2 nanorod arrays based self-powered UV photodetector: heterojunction with NiO nanoflakes and enhanced UV photoresponse, ACS Appl. Mater. Interfaces, 10, 11269, 10.1021/acsami.7b18815
Silva, 2016, Characterization of the chemical interaction between single-walled carbon nanotubes and titanium dioxide nanoparticles by thermogravimetric analyses and resonance Raman spectroscopy, Vib. Spectrosc., 86, 103, 10.1016/j.vibspec.2016.06.012
Park, 2013, Photoluminescence enhancement from hybrid structures of metallic single-walled carbon nanotube/ZnO films, Curr. Appl. Phys., 13, 2026, 10.1016/j.cap.2013.09.008
Dhall, 2014, A hydrogen gas sensor using a Pt-sputtered MWCNTs/ZnO nanostructure, Meas. Sci. Technol., 25, 10.1088/0957-0233/25/8/085103
Juan, 2002, Theory of the impedance of electron diffusion and recombination in a thin lay, J. Phys. Chem. B, 106, 325, 10.1021/jp011941g
Wang, 2022, Betavoltaic-powered electrochemical cells using TiO2 nanotube arrays incorporated with carbon nanotubes, Compos. Part B Eng., 239, 109952, 10.1016/j.compositesb.2022.109952
Tan, 2019, Heterogeneous photocatalysts: an overview of classic and modern approaches for optical, electronic, and charge dynamics evaluation, Chem. Soc. Rev., 48, 1255, 10.1039/C8CS00882E
Wang, 2016, Highly stable perovskite solar cells with an all-carbon hole transport layer, Nanoscale, 8, 11882, 10.1039/C6NR01152G
Selinsky, 2013, Quantum dot nanoscale heterostructures for solar energy conversion, Chem. Soc. Rev., 42, 2963, 10.1039/C2CS35374A