Self-organizing donor-acceptor assemblies of cobalt(II) porphyrin ligated with gold(III) porphyrin or fullero[60]pyrrolidine in liquid medium

Journal of Molecular Liquids - Tập 326 - Trang 115306 - 2021
N.G. Bichan1, E.N. Ovchenkova1, A.A. Ksenofontov1, N.O. Kudryakova1, A.S. Semeikin2, T.N. Lomova1
1G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia
2Ivanovo State Chemical Technology University, Ivanovo, Russia

Tài liệu tham khảo

El-Khouly, 2016, Light harvesting gold porphyrin - zinc phthalocyanine supramolecular donor-acceptor dyad, Photochem. Photobiol. Sci., 15, 1340, 10.1039/c6pp00228e Kc, 2016, Design and photochemical study of supramolecular donor-acceptor systems assembled via metal-ligand axial coordination, Coord. Chem. Rev., 322, 104, 10.1016/j.ccr.2016.05.012 Subbaiyan, 2009, Supramolecular donor−acceptor hybrid of electropolymerized zinc porphyrin with axially coordinated fullerene: formation, characterization, and photoelectrochemical properties, J. Phys. Chem C, 113, 8982, 10.1021/jp900507s Arlt, 1993, The accessory bacteriochlorophyll: a real electron carrier in primary photosynthesis, Proc, Nat. Acad. Sci., 90, 11757, 10.1073/pnas.90.24.11757 Bichan, 2019, Formation reaction, spectroscopy, and photoelectrochemistry of the donor–acceptor complex (5,10,15,20-tetraphenyl-21,23H-porphinato)cobalt(II) with pyridyl-substituted fullero[60]pyrrolidine, Rus. J. Inorg. Chem., 64, 605, 10.1134/S0036023619050024 Das, 2014, Electron transfer studies of high potential zinc porphyrin–fullerene supramolecular dyads, J. Phys. Chem C, 118, 3994, 10.1021/jp4118166 Poddutoori, 2015, Axially assembled photosynthetic reaction center mimics composed of tetrathiafulvalene, aluminum(III) porphyrin and fullerene entities, Nanoscale, 7, 12151, 10.1039/C5NR01675D Martín-Gomis, 2020, Distance matters: effect of the spacer length on the photophysical properties of multimodular perylenediimide–silicon phthalocyanine–fullerene triads, Chem. Eur. J., 26, 4822, 10.1002/chem.201905605 Bikram, 2012, Supramolecular donor–acceptor assembly derived from tetracarbazole–zinc phthalocyanine coordinated to fullerene: design, synthesis, photochemical, and photoelectrochemical studies, J. Phys. Chem C, 116, 11964, 10.1021/jp303227s Vahid Shetab, 2010, The C60-fullerene porphyrin adducts for prevention of the doxorubicin-induced acute cardiotoxicity in rat myocardial cells, Acta Med. Iranica, 48, 342 Ishikawa, 2018, J. Porphyrins Phthalocyanines, 22, 1, 10.1142/S108842461850092X Ovchenkova, 2020, Effects of a central atom and peripheral substituents onphotoinduced electron transfer in the phthalocyanine-fullerene donor-acceptor solution-processable dyads, J. Phys. Chem C, 124, 4010, 10.1021/acs.jpcc.9b11661 Rodríguez-Morgade, 2009, Synthesis, characterization, and photoinduced electron transfer processes of orthogonal ruthenium phthalocyanine−fullerene assemblies, J. Am. Chem. Soc., 131, 10484, 10.1021/ja902471w Shimizu, 2013, Discotic liquid crystals of transition metal complexes 48: synthesis of novel phthalocyanine-fullerene dyads and effect of a methoxy group on their clearing points, J. Porphyrins Phthalocyanines, 17, 264, 10.1142/S1088424613500168 Bichan, 2020, Mechanism of the self-assembly of donor–acceptor triads based on cobalt(II) porphyrin complex and fullero[60]pyrrolidine, according to data obtained by spectroscopic and electrochemical means, Rus. J. Phys. Chem. A, 94, 1159, 10.1134/S0036024420060060 Bichan, 2017, Cobalt(II) porphyrin axially coordinated with 2′-(pyridin-4-yl)-5′-(pyridin-2-yl)-1′-(pyridin-2-ylmethyl)-2′,4′-dihydro-1′H-pyrrolo[3′,4′ :1,2](C60-Ih)[5,6]fullerene: formation, chemical structure, and spectroscopic properties, J. Coord. Chem., 70, 2371, 10.1080/00958972.2017.1335867 Bichan, 2018, Formation reaction and chemical structure of a novel supramolecular triad based on cobalt(II) 5,10,15,20-(tetra-4-tert-butylphenyl)-21H,23H-porphyrin and 1-methyl-2-(pyridin-4′-yl)-3,4-fullero[60]pyrrolidine, J. Struct. Chem., 59, 711, 10.1134/S0022476618030320 Bichan, 2018, Self-assembled cobalt(II)porphyrin-fulleropyrrolidine triads via axial coordination with photoinduced electron transfer, New J. Chem., 42, 12449, 10.1039/C8NJ00887F Yan, 2018, Non-fullerene acceptors for organic solar cells, Nat. Rev. Mater., 3, 18003, 10.1038/natrevmats.2018.3 Brun, 1991, Charge transfer across oblique bisporphyrins: two-center photoactive molecules, J. Am. Chem. Soc., 113, 8657, 10.1021/ja00023a012 Poddutoori, 2015, Ultrafast charge separation and charge stabilization in axially linked ‘tetrathiafulvalene–aluminum(III) porphyrin–gold(III) porphyrin’ reaction center mimics, Phys. Chem. Chem. Phys., 17, 26346, 10.1039/C5CP04818D Fortage, 2009, Very fast single-step photoinduced charge separation in zinc porphyrin bridged to a gold porphyrin by a bisethynyl quaterthiophene, Inorg. Chem., 48, 518, 10.1021/ic800727e Takai, 2010, Photodynamics in stable complexes composed of a zinc porphyrin tripod and pyridyl porphyrins assembled by multiple coordination bonds, Phys. Chem. Chem. Phys., 12, 12160, 10.1039/c0cp00329h Göransson, 2012, Long-range electron transfer in zinc-phthalocyanine-oligo(phenylene-ethynylene)-based donor-bridge-acceptor dyads, Inorg. Chem., 51, 11500, 10.1021/ic3013552 Olmstead, 1999, Interaction of curved and flat molecular surfaces. The structures of crystalline compounds composed of fullerene (C60, C60O, C70, and C120O) and metal octaethylporphyrin units, J. Am. Chem. Soc., 121, 7090, 10.1021/ja990618c Ivanova, 2010, Pyridyl-substituted porphyrins: I. Synthesis and basicity of monopyridylporphyrins, Rus. J. Org. Chem., 46, 144, 10.1134/S1070428010010161 Prato, 1996, Synthesis and electrochemical properties of substituted fulleropyrrolidines, Tetrahedron, 52, 5221, 10.1016/0040-4020(96)00126-3 Schmidt, 1993, General atomic and molecular electronic structure system, J. Comput. Chem., 14, 1347, 10.1002/jcc.540141112 Becke, 1993, Density functional thermochemistry. III. The role of exact exchange, J. Chem. Phys., 98, 5648, 10.1063/1.464913 Weigend, 2005, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy, Phys. Chem. Chem. Phys., 7, 3297, 10.1039/b508541a Grimme, 2010, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys., 132, 154104, 10.1063/1.3382344 Pettersen, 2004, UCSF chimera-a visualization system for exploratory research and analysis, J. Comput. Chem., 25, 1605, 10.1002/jcc.20084 Zhurko, 2020 Terazono, 2003, X-ray crystal structure and ligand binding to β-tetrakis (trifluoromethyl)-meso-tetraphenylporphyrin cobalt(II), Inorg. Chim. Acta, 346, 265, 10.1016/S0020-1693(02)01392-0 Medforth, 2003, NMR spectroscopy of diamagnetic porphyrins, ChemInform, 34, 10.1002/chin.200329298 Preiß, 2019, Gold(II) porphyrins in photoinduced electron transfer reactions, Chem. Eur. J., 25, 5940, 10.1002/chem.201900050 Fahmy, 1990, Synthesis and characterization of μ-cyano(octaethylporphyrinato)cobalt(III), Recl. Trav. Chim. Pays-Bas, 109, 235, 10.1002/recl.19901090319 Itoh, 1988, Infrared spectra of .pi.-cation radicals of magnesium, zinc, and cobalt octaethylporphyrins, J. Phys. Chem., 92, 1464, 10.1021/j100317a020 Bethune, 1991, Vibrational raman and infrared spectra of chromatographically separated C60 and C70 fullerene clusters, Chem. Phys. Lett., 179, 181, 10.1016/0009-2614(91)90312-W Kadish, 2003, Electrochemistry of porphyrins and related macrocycles, J. Solid State Electrochem., 7, 254, 10.1007/s10008-002-0306-3 Gidi, 2018, Four-electron reduction of oxygen electrocatalyzed by a mixture of porphyrin complexes onto glassy carbon electrode, Int. J. Electrochem. Sci., 13, 1666, 10.20964/2018.02.07 Zhu, 2010, Electrochemistry and spectroelectrochemistry of β,β’-fused quinoxalinoporphyrins and related extended bis-porphyrins with Co(III), Co(II), and Co(I) central metal ions, Inorg. Chem., 49, 1027, 10.1021/ic901851u Laba, 2020, Electrochemical and optical aspects of cobalt meso-carbazole substituted porphyrin complexes, Electrochim. Acta, 330, 135140, 10.1016/j.electacta.2019.135140 Ke, 2018, Electrochemistry and Spectroelectrochemistry of cobalt porphyrins with π-extending and/or highly electron-withdrawing pyrrole substituents. In situ electrogeneration of σ-bonded complexes, Inorg. Chem., 57, 1490, 10.1021/acs.inorgchem.7b02856 Kadish, 2002, Evidence that gold(III) porphyrins are not electrochemically inert: facile generationj of gold(II) 5,10,15,20-tetrakis(3,5-di-tert-butylphenyl)porphyrin, Chem. Com., 4, 356, 10.1039/b109795d Preiß, 2016, Gold(III) tetraarylporphyrin amino acid derivatives: ligand or metal centred redox chemistry, Chem. Sci., 7, 596, 10.1039/C5SC03429A Jamin, 1978, Gold porphyrin complexes. Evidence for electrochemically inert gold(III), Inorg. Chim. Acta, 27, 135, 10.1016/S0020-1693(00)87273-4 Ou, 2004, Substituent effects on the site of electron transfer during the first reduction for gold(III) porphyrins, Inorg. Chem., 43, 2078, 10.1021/ic035070w Ou, 2013, Gold(III) porphyrins containing two, three, or four β,β’-fused quinoxalines. Synthesis, electrochemistry, and effect of structure and acidity on electroreduction mechanism, Inorg. Chem., 52, 2474, 10.1021/ic302380z D'Souza, 2002, Spectroscopic, electrochemical, and photochemical studies of self-assembled via axial coordination zinc porphyrin−fulleropyrrolidine dyads, J. Phys. Chem. A, 106, 3243, 10.1021/jp013165i D'Souza, 2003, Photoinduced electron transfer in “two-point” bound supramolecular triads composed of n,n-dimethylaminophenyl-fullerene-pyridine coordinated to zinc porphyrin, J. Phys. Chem. A, 107, 4801, 10.1021/jp030363w Troshin, 2005, An efficient [2+3] cycloaddition approach to the synthesis of pyridyl-appended fullerene ligands, Eur. J. Org. Chem., 14, 3064, 10.1002/ejoc.200500048 Ovchenkova, 2019, Study of the photoresponse of a titanium anode coated with solution-processed fullerene-containing metal porphyrin/phthalocyanine films, J. Mol. Liq., 280, 382, 10.1016/j.molliq.2019.01.025