Self-labelling of tugboat operation using unsupervised machine learning and intensity indicator
Tài liệu tham khảo
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., et al., Tensorflow: large-scale machine learning on heterogeneous distributed systems, ArXiv Prepr. arXiv:1603 (2016). http://arxiv.org/abs/1603.04467.
Bae, K., Ryu, H., Shin, H., Does Adam optimizer keep close to the optimal point?, ArXiv Prepr. ArXiv1911.00289, (2019).
Balakrishnan, 2016, Technological and economic advancement of tug boats, IOSR J. Mech. Civ. Eng., 87
Bialystocki, 2016, On the estimation of ship's fuel consumption and speed curve: a statistical approach, J. Ocean Eng. Sci., 1, 157, 10.1016/j.joes.2016.02.001
Celebi, 2016
Chai, 2014, Root mean square error (RMSE) or mean absolute error (MAE)?, Geosci. Model Dev., 7, 10.5194/gmd-7-1247-2014
Dixon, 1951
Fam, 2021, An artificial neural network based decision support system for cargo vessel operations, 3391
Fam, 2022, An artificial neural network for fuel efficiency analysis for cargo vessel operation, Ocean Eng., 264, 10.1016/j.oceaneng.2022.112437
Grinstein, 2002
Grosan, 2011, Rule-based expert systems, Intell. Syst. A Mod. Approach, 149, 10.1007/978-3-642-21004-4_7
Hadi, 2022, Ship navigation and fuel profiling based on noon report using neural network generative modeling, J. Phys. Conf. Ser., 2311, 12005, 10.1088/1742-6596/2311/1/012005
Hadi, 2022, Filtering harbor craft vessels’ fuel data using statistical, decomposition, and predictive methodologies, Marit. Transp. Res., 3
Harris, 2020, Array programming with NumPy, Nature, 585, 357, 10.1038/s41586-020-2649-2
Hartigan, 1979, Algorithm AS 136: a k-means clustering algorithm, J. R. Stat. Soc. Ser. C (Applied Stat., 28, 100
Hunter, 2007, Matplotlib: a 2D graphics environment, Comput. Sci. Eng., 9, 90, 10.1109/MCSE.2007.55
Jain, 1996, Artificial neural networks: a tutorial, Computer, 29, 31, 10.1109/2.485891
Kang, 2020, Capacity analysis of ship-tugging operations in a large container port, Asian Transp. Stud., 6, 10.1016/j.eastsj.2020.100011
Kotsiantis, 2005, Handling imbalanced datasets: a review, GESTS Int. Trans. Comput. Sci. Eng., 30, 25
Kumar, 2021, Classification of imbalanced data:review of methods and applications, IOP Conf. Ser. Mater. Sci. Eng., 1099, 12077, 10.1088/1757-899X/1099/1/012077
Lemire, 2015, Decoding billions of integers per second through vectorization, Softw. Pract. Exp., 45, 1, 10.1002/spe.2203
Lou, 2017, Cruise speed optimization of tugboat based on real fuel consumption and emission, Jiaotong Yunshu Gongcheng Xuebao J. Traffic Transp. Eng., 17, 93
McKinney, 2010, Data structures for statistical computing in Python, 445, 56, 10.25080/Majora-92bf1922-00a
Murray, 2013
Pedregosa, 2011, Scikit-learn: machine learning in Python, J. Mach. Learn. Res., 12, 2825
Tay, 2021, Big data analytics and machine learning of harbour craft vessels to achieve fuel efficiency: a review, J. Mar. Sci. Eng., 9, 1351, 10.3390/jmse9121351
Tay, 2021, Efficient harbor craft monitoring system: time-series data analytics and machine learning tools to achieve fuel efficiency by operational scoring system
Virtanen, 2019, SciPy 1.0-fundamental algorithms for scientific computing in Python, Nat. Methods, 17, 261, 10.1038/s41592-019-0686-2
Walt, 2011, The NumPy array: a structure for efficient numerical computation, Comput. Sci. Eng., 13, 22, 10.1109/MCSE.2011.37
Weinhardt, 2001, Pipeline vectorization, IEEE Trans. Comput. Des. Integr. Circuits Syst., 20, 234, 10.1109/43.908452