Self-labelling of tugboat operation using unsupervised machine learning and intensity indicator

Maritime Transport Research - Tập 4 - Trang 100082 - 2023
Januwar Hadi1, Dimitrios Konovessis2, Zhi Yung Tay1
1Engineering Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 534038, Singapore
2Department of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, 100 Montrose St, Glasgow G4 0LZ, United Kingdom

Tài liệu tham khảo

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., et al., Tensorflow: large-scale machine learning on heterogeneous distributed systems, ArXiv Prepr. arXiv:1603 (2016). http://arxiv.org/abs/1603.04467. Bae, K., Ryu, H., Shin, H., Does Adam optimizer keep close to the optimal point?, ArXiv Prepr. ArXiv1911.00289, (2019). Balakrishnan, 2016, Technological and economic advancement of tug boats, IOSR J. Mech. Civ. Eng., 87 Bialystocki, 2016, On the estimation of ship's fuel consumption and speed curve: a statistical approach, J. Ocean Eng. Sci., 1, 157, 10.1016/j.joes.2016.02.001 Celebi, 2016 Chai, 2014, Root mean square error (RMSE) or mean absolute error (MAE)?, Geosci. Model Dev., 7, 10.5194/gmd-7-1247-2014 Dixon, 1951 Fam, 2021, An artificial neural network based decision support system for cargo vessel operations, 3391 Fam, 2022, An artificial neural network for fuel efficiency analysis for cargo vessel operation, Ocean Eng., 264, 10.1016/j.oceaneng.2022.112437 Grinstein, 2002 Grosan, 2011, Rule-based expert systems, Intell. Syst. A Mod. Approach, 149, 10.1007/978-3-642-21004-4_7 Hadi, 2022, Ship navigation and fuel profiling based on noon report using neural network generative modeling, J. Phys. Conf. Ser., 2311, 12005, 10.1088/1742-6596/2311/1/012005 Hadi, 2022, Filtering harbor craft vessels’ fuel data using statistical, decomposition, and predictive methodologies, Marit. Transp. Res., 3 Harris, 2020, Array programming with NumPy, Nature, 585, 357, 10.1038/s41586-020-2649-2 Hartigan, 1979, Algorithm AS 136: a k-means clustering algorithm, J. R. Stat. Soc. Ser. C (Applied Stat., 28, 100 Hunter, 2007, Matplotlib: a 2D graphics environment, Comput. Sci. Eng., 9, 90, 10.1109/MCSE.2007.55 Jain, 1996, Artificial neural networks: a tutorial, Computer, 29, 31, 10.1109/2.485891 Kang, 2020, Capacity analysis of ship-tugging operations in a large container port, Asian Transp. Stud., 6, 10.1016/j.eastsj.2020.100011 Kotsiantis, 2005, Handling imbalanced datasets: a review, GESTS Int. Trans. Comput. Sci. Eng., 30, 25 Kumar, 2021, Classification of imbalanced data:review of methods and applications, IOP Conf. Ser. Mater. Sci. Eng., 1099, 12077, 10.1088/1757-899X/1099/1/012077 Lemire, 2015, Decoding billions of integers per second through vectorization, Softw. Pract. Exp., 45, 1, 10.1002/spe.2203 Lou, 2017, Cruise speed optimization of tugboat based on real fuel consumption and emission, Jiaotong Yunshu Gongcheng Xuebao J. Traffic Transp. Eng., 17, 93 McKinney, 2010, Data structures for statistical computing in Python, 445, 56, 10.25080/Majora-92bf1922-00a Murray, 2013 Pedregosa, 2011, Scikit-learn: machine learning in Python, J. Mach. Learn. Res., 12, 2825 Tay, 2021, Big data analytics and machine learning of harbour craft vessels to achieve fuel efficiency: a review, J. Mar. Sci. Eng., 9, 1351, 10.3390/jmse9121351 Tay, 2021, Efficient harbor craft monitoring system: time-series data analytics and machine learning tools to achieve fuel efficiency by operational scoring system Virtanen, 2019, SciPy 1.0-fundamental algorithms for scientific computing in Python, Nat. Methods, 17, 261, 10.1038/s41592-019-0686-2 Walt, 2011, The NumPy array: a structure for efficient numerical computation, Comput. Sci. Eng., 13, 22, 10.1109/MCSE.2011.37 Weinhardt, 2001, Pipeline vectorization, IEEE Trans. Comput. Des. Integr. Circuits Syst., 20, 234, 10.1109/43.908452