Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation

Science advances - Tập 2 Số 4 - 2016
Lin Zhou1, Yingling Tan1, Dengxin Ji2, Bin Zhu1, Pei Zhang3, Xiaowei Zhang3, Qiaoqiang Gan2, Zongfu Yu4, Jia Zhu1
1National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
2Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
3School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
4Department of Electrical and Computer Engineering, University of Wisconsin Madison, Madison, WI 53706, USA.

Tóm tắt

A self-assembling plasmonic absorber absorbs light efficiently across a wide range of wavelengths and could be used in nanophotonic devices.

Từ khóa


Tài liệu tham khảo

10.1021/nl072369t

10.1073/pnas.0900155106

J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, C. Jensen, Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate. Nano Lett. 10, 3261–3266 (2010).

10.1021/nl5012678

W. Li, J. Valentine, Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 14, 3510–3514 (2014).

10.1038/nnano.2014.31

10.1038/ncomms5449

O. Neumann, C. Feronti, A. D. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, N. J. Halas, Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 110, 11677–11681 (2013).

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanović, M. Soljačić, E. N. Wang, A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol. 9, 126–130 (2014).

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, S.-G. Kim, Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals. Adv. Mater. 26, 8041– 8045 (2014).

J.-H. Lee, Y.-S. Kim, K. Constant, K.-M. Ho, Woodpile metallic photonic crystals fabricated by using soft lithography for tailored thermal emission. Adv. Mater. 19, 791–794 (2007).

K. A. Arpin, M. D. Losego, A. N. Cloud, H. Ning, J. Mallek, N. P. Sergeant, L. Zhu, Z. Yu, B. Kalanyan, G. N. Parsons, G. S. Girolami, J. R. Abelson, S. Fan, P. V. Braun, Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification. Nat. Commun. 4, 2630 (2013).

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett. 9, 279− 282 (2009).

10.1038/ncomms4011

F. J. García-Vidal, J. M. Pitarke, J. B. Pendry, Effective medium theory of the optical properties of aligned carbon nanotubes. Phys. Rev. Lett. 78, 4289–4292 (1997).

J.-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, J. A. Smart, Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection. Nat. Photonics 1, 176–179 (2007).

Z. Yu, A. Raman, S. Fan, Fundamental limit of nanophotonic light trapping in solar cells. Proc. Natl. Acad. Sci. U.S.A. 107, 17491–17496 (2010).

10.1103/PhysRevLett.100.207402

K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2, 517 (2011).

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, S. I. Bozhevolnyi, Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves. Nat. Commun. 3, 969 (2012).

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, N. X. Fang, Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett. 12, 1443–1447 (2012).

X. Xiong, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, M. Wang, Structured metal film as a perfect absorber. Adv. Mater. 25, 3394–4000 (2013).

J. Zhou, A. F. Kaplan, L. Chen, L. J. Guo, Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array. ACS Photonics 1, 618–624 (2014).

J. A. Bossard, L. Lin, S. Yun, L. Liu, D. H. Werner, T. S. Mayer, Near-ideal optical metamaterial absorbers with super-octave bandwidth. ACS Nano 8, 1517–1524 (2014).

W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, A. V. Kildshev, Refractory plasmonics with titanium nitride: Broadband metamaterial absorber. Adv. Mater. 26, 7959–7965 (2014).

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. N. Basov, S. Ramanathan, F. Capasso, Ultra-thin perfect absorber employing a tunable phase change material. Appl. Phys. Lett. 101, 221101 (2012).

J. Yeom, B. Yeom, H. Chan, K. W. Smith, S. Dominguez-Medina, J. H. Bahng, G. Zhao, W.-S. Chang, S.-J. Chang, A. Chuvilin, D. Melnikau, A. L. Rogach, P. Zhang, S. Link, P. Král, N. A. Kotov, Chiral templating of self-assembling nanostructures by circularly polarized light. Nat. Mater. 14, 66− 72 (2015).

S. Yang, X. Ni, X. Yin, B. Kante, P. Zhang, J. Zhu, Y. Wang, X. Zhang, Feedback-driven self-assembly of symmetry breaking optical metamaterials in solution. Nat. Nanotechnol. 9, 1002–1006 (2014).

10.1038/nmat4031

10.1039/c3cs60341e

S. Dutta, A. Bhaumik, K. C.-W. Wu, Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy Environ. Sci. 7, 3574–3592 (2014).

10.1038/nnano.2009.453

10.1021/nn100869j

M. R. Gartia, A. Hsiao, A. Pokhriyal, S. Seo, G. Kulsharova, B. T. Cunningham, T. C. Bond, G. L. Liu, Colorimetric plasmon resonance imaging using nano Lycurgus cup arrays. Adv. Opt. Mater. 1, 68–76 (2013).

10.1002/adma.201003217

10.1038/nmat1717

S. Shukla, K.-T. Kim, A. Baev, Y. K. Yoon, N. M. Litchinitser, P. N. Prasad, Fabrication and characterization of gold-polymer nanocomposite plasmonic nanoarrays in a porous alumina template. ACS Nano 4, 2249–2255 (2010).

R. A. Pala, J. S. Q. Liu, E. S. Barnard, D. Askarov, E. C. Garnett, S. Fan, M. L. Brongersma, Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells. Nat. Commun. 4, 2095 (2013).

10.1038/nature13883

F. Cao, K. McEnaney, G. Chen, Z. Ren, A review of cermet-based spectrally selective solar absorbers. Energy Environ. Sci. 7, 1615–1627 (2014).

K. Vynck, M. Burresi, F. Riboli, D. S. Wiersma, Photon management in two-dimensional disordered media. Nat. Mater. 11, 1017–1022 (2012).

10.1038/nnano.2007.389

10.1021/nn304948h

M. L. Brongersma, N. J. Halas, P. Nordlander, Plasmonic-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015).

M. Planck The Theory of Heat Radiation (Dover Publication Inc. New York 1912).

P.-M. Robitaille, On the validity of Kirchhoff’s law of thermal emission. IEEE Trans Plasma Sci. 31, 1263–1267 (2003).

J. Martín, M. Martín-González, J. F. Fernández, O. Caballero-Calero, Ordered three-dimensional interconnected nanoarchitectures in anodic porous alumina. Nat. Commun. 5, 5130 (2014).

C. Hägglund, G. Zeltzer, R. Ruiz, I. Thomann, H.-B.-R. Lee, M. L. Brongersma, S. F. Bent, Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption. Nano Lett. 13, 3352–3357 (2013).

E. D. Palik Handbook of Optical Constants of Solids (Academic Press New York 1985).

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, Y. Zhu, Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes. Phys. Rev. Lett. 110, 207401 (2013).

10.1038/nature10889

10.1038/nmat2493

D. A. G. Bruggeman. Calculations of various physical constants of heterogeneous substance. Part I: Dielectric constants and conductivity of isotropic substance. Ann. Phys. Berlin 24, 636–699 (1935).

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000).

W. Ma, Y. Wen, X. Yu, Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators. Opt. Express 21, 30724–30730 (2013).

A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schäferling, N. Liu, R. Rapaport, H. Giessen, Quantitative angle-resolved small-spot reflectance measurements on plasmonic perfect absorbers: Impedance matching and disorder effects. ACS Nano 8, 10885–10892 (2014).