Self-adaptive forward–backward splitting algorithm for the sum of two monotone operators in Banach spaces

Abdulmalik U. Bello1,2, Charles E. Chidume1, Maryam Alka1,3
1African University of Science and Technology, Abuja, Nigeria
2Federal University Dutsinma, Katsina, Nigeria
3Planning Research and Statistics Department, Federal Inland Revenue Service, FCT, Abuja, Nigeria

Tóm tắt

In this work, we prove the weak convergence of a one-step self-adaptive algorithm to a solution of the sum of two monotone operators in 2-uniformly convex and uniformly smooth real Banach spaces. We give numerical examples in infinite-dimensional spaces to compare our result with some existing algorithms. Finally, our results extend and complement several existing results in the literature.

Tài liệu tham khảo

Abass, H.A., Aremu, K.O., Jolaoso, L.O., Mewomo, O.T.: An inertial forward–backward splitting method for approximating solutions of certain optimization problems. J. Nonlinear Funct. Anal. 2020, Article ID 6 (2020) Alber, Y.: Metric and generalized projection operators in Banach spaces: properties and applications. In: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Lecture Notes in Pure and Appl. Math., vol. 178, pp. 15–50. Dekker, New York (1996) Alber, Y., Guerre-Delabriere, S.: On the projections for fixed points problems. Analysis 21(1), 17–39 (2001) Alber, Y., Ryazantseva, I.: Nonlinear Ill Posed Problems of Monotone Type. Springer, London (2006) Aoyama, K., Kohsaka, F.: Strongly relatively nonexpansive sequences generated by firmly nonexpansive-like mappings. Fixed Point Theory Appl. 2014, Article ID 95 (2014) Attouch, H., Peypouquet, J., Redont, P.: Backward–forward algorithms for structured monotone inclusions in Hilbert spaces. J. Math. Anal. Appl. 457, 1095–1117 (2018) Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Editura Academiei R.S.R, Bucharest (1976) Beauzamy, B.: Introduction to Banach Spaces and Their Geometry, 2nd edn. North-Holland Mathematics Studies, vol. 68, p. xv+338 North-Holland, Amsterdam (1985). ISBN 0-444-87878-5. Notas de Matematica [Mathematical Notes], 86 Bredies, K.: A forward–backward splitting algorithm for the minimization of non-smooth convex functionals in Banach space. Inverse Probl. 25(1), 015005 (2009) Bruck, R.: On the weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in Hilbert space. J. Math. Anal. Appl. 61, 159–164 (1977) Censor, Y., Elfving, T.: A multi-projection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221–239 (1994) Chen, G.H.G., Rockafellar, R.T.: Convergence rates in forward–backward splitting. SIAM J. Optim. 7(2), 421–444 (1997) Chidume, C.E., Bello, A.U., Usman, B.: Iterative Algorithms for Zeros of Strongly Monotone Lipschitz Maps in Classical Banach Spaces p. 9. Springer, Berlin (2015). https://doi.org/10.1186/s40064-015-1044-1 Chidume, C.E., Chidume, C.O., Bello, A.U.: An algorithm for zeros of generalized phi-strongly monotone and bounded maps in classical Banach spaces. Optimization (2015). https://doi.org/10.1080/02331934.2015.1074686 Combettes, P., Wajs, V.R.: Signal recovery by proximal forward–backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005) Davis, D., Yin, W.T.: A three-operator splitting scheme and its optimization applications. Set-Valued Var. Anal. 25, 829–858 (2017) Hieu, D.V., Anh, P.K., Muu, L.D.: Modified Forward Reflected Backward Spliting Method for Variational Inclusions. Springer, Berlin (2020). https://doi.org/10.1007/s10288-020-00440-3 Kamimura, S., Takahashi, W.: Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 13(3), 938–945 (2003) Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979) Liu, L.: Strong convergence of a modified inertial forward–backward splitting algorithm for a inclusion problem. J. Appl. Numer. Optim. 2, 373–385 (2020) Malitsky, Y., Tam, M.K.: A forward–backward spliting method for monotone inclusion without cocoercivity. SIAM J. Optim. 30(2), 1451–1472 (2020) Moudafi, A., Thera, M.: Finding a zero of the sum of two maximal monotone operators. J. Optim. Theory Appl. 94, 425–448 (1997) Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert spaces. J. Math. Anal. Appl. 72, 383–390 (1979) Peaceman, D.H., Rachford, H.H.: The numerical solutions of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3, 28–41 (1955) Reich, S.: A weak convergence theorem for the alternating method with Bregman distances. In: Kartsatos, A.G. (ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Lecture Notes Pure Appl. Math., vol. 178, pp. 313–318. Dekker, New York (1996) Shehu, Y.: Convergence results of forward–backward algorithm for sum of monotone operator in Banach spaces. Results Math. 74, 138 (2019) Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000) Tseng, P.: A modified forward–backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000) Tuyen, T.M., Promkam, R., Sunthrayuth, P.: Strong convergence of a generalized forward–backward splitting method in reflexive Banach spaces. Optimization 71(6), 1483–1508(2020). https://doi.org/10.1080/02331934.2020.1812607 Wang, Y., Xu, H.K.: Strong convergence for the proximal-gradient method. J. Nonlinear Convex Anal. 15(3), 581–593 (2014)