Self‐Templating Synthesis of 3D Hollow Tubular Porous Carbon Derived from Straw Cellulose Waste with Excellent Performance for Supercapacitors

Wiley - Tập 12 Số 7 - Trang 1390-1400 - 2019
Zhimin Chen1, Xiaofeng Wang2, Beichen Xue2, Qingling Wei1, Lianghai Hu3, Zichen Wang1, Xiaomin Yang1, Jieshan Qiu4
1College of Chemistry, Jilin University, Changchun, 130012, P. R. China
2State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China
3School of Life Sciences, Jilin University, Changchun 130012, P. R China
4College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China

Tóm tắt

Abstract

A three‐dimensional hollow tubular porous carbon (SCPC) was prepared from straw cellulose waste through a self‐templating method combined with NaOH activation. Straw cellulose acts both as carbon source and structural template. The obtained SCPC exhibits a 3D hierarchical porous network structure. SCPC has a high specific surface area, a high mesoporosity ratio, and a low resistivity, which make it display excellent electrochemical performance for supercapacitors. SCPC showed a high specific capacitance of 312.57 F g−1 in 6 m KOH at 0.5 A g−1, an excellent rate performance of 281.32 F g−1 even at 15 A g−1, and an outstanding cyclic stability of 92.93 % capacitance retention after 20 000 cycles at 1 A g−1. SCPC‐based supercapacitors can deliver an energy density of 8.67 Wh kg−1 at a power density of 3.50 kW kg−1 in 6 m KOH and an energy density of 28.56 Wh kg−1 at a power density of 14.09 kW kg−1 in 1 m Et4NBF4/PC, which demonstrates the possibility of applying SCPC in supercapacitors. This research not only offers a facile and sustainable method for the preparation of hierarchical porous carbon for electrochemical energy storage devices but also provides a highly efficient method for the utilization of biomass waste.

Từ khóa


Tài liệu tham khảo

 

10.1126/science.1114736

10.1016/j.rser.2010.11.037

 

10.1016/j.biortech.2009.09.045

10.1016/S1350-4177(01)00106-7

10.1007/s10853-017-1683-4

 

10.1039/c3cc38009b

10.1021/cm1002274

10.1039/C2TA00533F

10.1016/j.biombioe.2017.10.025

10.1039/C6TA09229B

10.1021/acs.iecr.5b01060

10.1021/acsnano.7b01350

 

10.1016/j.bios.2014.11.022

10.1016/j.nanoen.2016.09.023

 

10.1002/adfm.201403280

10.1039/C4NR05264A

10.1002/adfm.201603659

10.1016/j.carbon.2013.09.070

10.1016/j.carbon.2013.09.089

 

Zhai X. L., 2012, Int. J. Electrochem. Sci., 7, 7304, 10.1016/S1452-3981(23)15786-5

10.1002/cssc.201403486

J. Feng Y. Yin Adv. Mater.2018 https://doi.org/10.1002/adma.201802349e1802349.

10.1038/nature01941

10.1002/adma.201401413

10.1002/anie.200460587

10.1002/ange.200460587

 

10.1016/j.carbon.2009.04.026

10.1002/aenm.201100312

10.1007/s10008-017-3689-x

10.1016/j.nanoen.2017.01.021

 

10.1016/j.carbon.2004.11.005

10.1016/S0008-6223(02)00279-8

10.1016/j.carbon.2004.01.008

 

10.1016/j.cej.2014.02.023

10.1016/j.jpowsour.2011.12.054

10.1039/C4RA15111A

 

10.1103/PhysRevB.64.075414

10.1007/s10853-018-2584-x

 

10.1007/s10008-017-3631-2

10.1002/cjoc.201600320

 

10.1039/C6QM00196C

10.1016/j.jpowsour.2015.03.115

10.1016/j.cej.2014.10.090

10.1016/j.carbon.2006.04.017

 

10.1016/j.electacta.2011.10.067

10.1007/s10008-013-2110-7

10.1016/j.carbon.2011.07.005

10.1002/celc.201600614

10.1016/j.electacta.2017.03.177

10.1016/j.energy.2017.04.065

 

10.1016/j.jpowsour.2006.09.014

10.1016/j.electacta.2007.05.004

10.1002/aenm.201401761

10.1016/j.jpowsour.2016.01.020

10.1039/C4RA16965D

10.1016/j.colsurfa.2015.08.030