Self‐Templating Construction of Hollow Amorphous CoMoS4 Nanotube Array towards Efficient Hydrogen Evolution Electrocatalysis at Neutral pH

Chemistry - A European Journal - Tập 23 Số 52 - Trang 12718-12723 - 2017
Weiyi Wang1, Xiang Ren1, Shuai Hao1, Zhiang Liu2, Fengyu Xie3, Yadong Yao4, Abdullah M. Asiri5, Liang Chen6, Xuping Sun1
1College of Chemistry, Sichuan University, Chengdu, 610064, Sichuan, China
2College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
3College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, Sichuan, China
4College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, Sichuan, China
5Chemistry Department and Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
6Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, China

Tóm tắt

AbstractEnvironmentally friendly electrochemical hydrogen production needs the development of earth‐abundant catalyst materials for the hydrogen evolution reaction with high activity and durability at neutral pH. In this work, the self‐templating construction of a hollow amorphous CoMoS4 nanotube array on carbon cloth (CoMoS4 NTA/CC) is reported, using hydrothermal treatment of a Co(OH)F nanowire array on CC in (NH4)2MoS4 solution. When used as a 3D electrode for hydrogen evolution electrocatalysis, the resulting CoMoS4 NTA/CC demonstrates superior catalytic activity and strong long‐term electrochemical durability in 1.0 M phosphate buffer solution (pH=7). It shows small onset overpotential of 21 mV and requires low overpotentials of 104 and 179 mV to drive geometrical current densities of 10 and 50 mA cm−2, respectively. Density functional theory calculations suggest that CoMoS4 has a more favorable hydrogen adsorption free energy than Co(OH)F.

Từ khóa


Tài liệu tham khảo

10.1126/science.1103197

10.1126/science.1211934

10.1021/cr1002326

10.1002/adma.201502696

10.1039/C4CS00448E

10.1021/ja503372r

10.1126/science.1179773

10.1016/0360-3199(83)90162-3

Symes M. D., 2012, Materials for Water Splitting, in Materials for a Sustainable Future, 592, 10.1039/BK9781849734073-00592

10.1021/ar900253e

10.1016/j.ccr.2010.06.004

10.1002/anie.201007987

10.1002/ange.201007987

10.1038/nmat3385

10.1021/ja4094764

10.1039/C5TA08611F

10.1002/anie.201311111

10.1002/ange.201311111

10.1016/j.jpowsour.2015.01.009

10.1002/advs.201500426

10.1039/C1SC00117E

10.1021/ar5002022

10.1039/c2sc20539d

10.1021/acs.accounts.6b00480

10.1002/anie.201406848

10.1002/ange.201406848

10.1002/anie.201610776

10.1002/ange.201610776

10.1002/anie.201610413

10.1002/ange.201610413

10.1021/nn504755x

10.1002/smll.201302224

10.1002/anie.201603197

10.1002/ange.201603197

10.1039/c2ee02835b

10.1038/nmat3439

10.1016/0926-860X(95)00037-2

10.1021/cm00024a046

10.1021/nl403661s

10.1021/ja504099w

10.1016/S0926-860X(01)00893-6

10.1007/BF02117537

10.1002/adma.201401692

10.1039/c3ee40600h

10.1039/c2ee22611a

10.1002/anie.201303495

10.1002/ange.201303495

10.1021/acs.nanolett.6b03332

10.1016/S0013-4686(02)00329-8

10.1002/anie.201503407

10.1002/ange.201503407

10.1039/c3ee42383b

10.1126/science.1162018

10.1021/la504162u

10.1002/adma.201302685

10.1149/1.1856988

10.1016/0927-0256(96)00008-0

10.1103/PhysRevB.54.11169

10.1103/PhysRevB.49.14251

10.1103/PhysRevLett.78.1396

10.1103/PhysRevB.59.1758

10.1103/PhysRevB.50.17953

10.1103/PhysRevB.13.5188

10.1002/jcc.20495