Cấu Trúc Tự Niêm Phong Hỗ Trợ Bằng Kim Loại Của Pin Nhiên Liệu Oxit Rắn (MS-SOFC) Chế Tạo Bằng Công Nghệ Phun Plasma Và Hiệu Năng Dưới Áp Suất Khí Không Cân Bằng

Journal of Thermal Spray Technology - Tập 29 - Trang 2001-2011 - 2020
Jiu-Tao Gao1, Jia-Hong Li1, Yue-Peng Wang1, Chang-Jiu Li1, Cheng-Xin Li1
1State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an, China

Tóm tắt

Một cấu trúc tự niêm phong mới cho các pin nhiên liệu oxit rắn hỗ trợ bởi kim loại (MS-SOFCs) được thiết kế bằng cách áp dụng công nghệ hàn để giải quyết vấn đề niêm phong tại phía anode của các pin SOFC phẳng. Kết quả là, hiệu ứng tự niêm phong có độ tin cậy cao được đạt được tại phía anode của MS-SOFC. Công nghệ phun plasma được sử dụng để chuẩn bị các lớp chức năng của tế bào, bao gồm anode, cathode và điện phân. Một tế bào đơn được lắp ráp với lớp điện phân ZrO2 (ScSZ) ổn định Sc2O3 có độ dày 50–60 μm được phun plasma. Độ thấm khí của MS-SOFC tự niêm phong mà không có lớp cathode là 0.42 × 10−17 m2. Điện áp mạch hở của tế bào là khoảng 1.1 V trong dải nhiệt độ hoạt động từ 550 đến 750 °C. Mật độ công suất của tế bào đạt 1109 mW cm−2 ở 750 °C dưới áp suất tiêu chuẩn. Thêm vào đó, việc sử dụng áp suất khí nhiên liệu cao hơn 20 kPa so với áp suất khí cathodic mang lại sự tăng đáng kể mật độ công suất lên đến 1782 mW cm−2 ở 750 °C. Cấu trúc tế bào mới và độ kín khí của lớp điện phân ScSZ được chế tạo bằng công nghệ phun plasma cho thấy nó có thể đáp ứng yêu cầu cho các ứng dụng SOFC.

Từ khóa

#Pin nhiên liệu oxit rắn #niêm phong tự động #phun plasma #áp suất khí không cân bằng #mật độ công suất

Tài liệu tham khảo

M. van den Bossche and S. McIntosh, in Direct Hydrocarbon Solid Oxide Fuel Cells, Fuel Cells: Selected Entries from the Encyclopedia of Sustainability Science and Technology, ed. by K.-D. Kreuer (Springer, New York, 2013), p. 31-76 S.P.S. Badwal, S. Giddey, A. Kulkarni, J. Goel, and S. Basu, Direct Ethanol Fuel Cells for Transport and Stationary Applications—A Comprehensive Review, Appl. Energy, 2015, 145, p 80-103 A.A. Ahmad, N.A. Zawawi, F.H. Kasim, A. Inayat, and A. Khasri, Assessing the Gasification Performance of Biomass: A Review on Biomass Gasification Process Conditions, Optimization and Economic Evaluation, Renew. Sustain. Energy Rev., 2016, 53, p 1333-1347 N. Laosiripojana, W. Wiyaratn, W. Kiatkittipong, A. Arpornwichanop, A. Soottitantawat, and S. Assabumrungrat, Reviews on Solid Oxide Fuel Cell Technology, Eng. J., 2009, 13(1), p 65-84 J. Patakangas, Y. Ma, Y. Jing, and P. Lund, Review and Analysis of Characterization Methods and Ionic Conductivities for Low-Temperature Solid Oxide Fuel Cells (LT-SOFC), J. Power Sources, 2014, 263, p 315-331 D. Marcano, G. Mauer, R. Vaßen, and A. Weber, Manufacturing of High Performance Solid Oxide Fuel Cells (SOFCs) with Atmospheric Plasma Spraying (APS) and Plasma Spray-Physical Vapor Deposition (PS-PVD), Surf. Coat. Technol., 2017, 318, p 170-177 C.-S. Hwang, C.-H. Tsai, J.-F. Yu, C.-L. Chang, J.-M. Lin, Y.-H. Shiu, and S.-W. Cheng, High Performance Metal-Supported Intermediate Temperature Solid Oxide Fuel Cells Fabricated by Atmospheric Plasma Spraying, J. Power Sources, 2011, 196(4), p 1932-1939 B. Shri Prakash, S. Senthil Kumar, and S.T. Aruna, Properties and Development of Ni/YSZ as an Anode Material in Solid Oxide Fuel Cell: A Review, Renew. Sustain. Energy Rev., 2014, 36, p 149-179 V.V. Krishnan, Recent Developments in Metal-Supported Solid Oxide Fuel Cells, Wiley Interdiscip. Rev. Energy Environ., 2017, 6(5), p e246 Y. Zhou, X. Xin, J. Li, X. Ye, C. Xia, S. Wang, and Z. Zhan, Performance and Degradation of Metal-Supported Solid Oxide Fuel Cells with Impregnated Electrodes, Int. J. Hydrog. Energy, 2014, 39(5), p 2279-2285 S.F. Yang, C.S. Hwang, C.H. Tsai, C.L. Chang, and M.H. Wu, Production of Metal-Supported Solid Oxide Fuel Cell Using Thermal Plasma Spraying Technique, IEEE Trans. Plasma Sci., 2017, 45, p 318-322 F. Thaler, D. Udomsilp, W. Schafbauer, C. Bischof, Y. Fukuyama, Y. Miura, M. Kawabuchi, S. Taniguchi, S. Takemiya, A. Nenning, A.K. Opitz, and M. Bram, Redox Stability of Metal-Supported Fuel Cells with Nickel/Gadolinium-Doped Ceria Anode, J. Power Sources, 2019, 434, p 226751 R. Hui, Z. Wang, O. Kesler, L. Rose, J. Jankovic, S. Yick, R. Maric, and D. Ghosh, Thermal Plasma Spraying for SOFCs: Applications, Potential Advantages, and Challenges, J. Power Sources, 2007, 170(2), p 308-323 M.C. Tucker, Development of High Power Density Metal-Supported Solid Oxide Fuel Cells, Energy Technol., 2017, 5(12), p 2175-2181 P.K. Ojha, T.K. Chongdar, N.M. Gokhale, and A.R. Kulkarni, Investigation of Crystallization Kinetic of SrO-La2O3-Al2O3-B2O3-SiO2 Glass and Its Suitability for SOFC Sealant, Int. J. Hydrog. Energy, 2011, 36(22), p 14996-15001 B. Cela Greven, S. Gross-Barsnick, T. Koppitz, R. Conradt, F. Smeacetto, A. Ventrella, and M. Ferraris, Torsional Shear Strength of Novel Glass-Ceramic Composite Sealants for Solid Oxide Fuel Cell Stacks, Int. J. Appl. Ceram. Technol., 2018, 15(2), p 286-295 R. Henne, Solid Oxide Fuel Cells: A Challenge for Plasma Deposition Processes, J. Therm. Spray Technol., 2007, 16(3), p 381-403 R. Vaßen, D. Hathiramani, J. Mertens, V.A.C. Haanappel, and I.C. Vinke, Manufacturing of High Performance Solid Oxide Fuel Cells (SOFCs) with Atmospheric Plasma Spraying (APS), Surf. Coat. Technol., 2007, 202(3), p 499-508 M. Marr, J. Kuhn, C. Metcalfe, J. Harris, and O. Kesler, Electrochemical Performance of Solid Oxide Fuel Cells Having Electrolytes Made by Suspension and Solution Precursor Plasma Spraying, J. Power Sources, 2014, 245(1), p 398-405 A. Kumar, A. Jaiswal, M. Sanbui, and S. Omar, Scandia Stabilized Zirconia-Ceria Solid Electrolyte (xSc1CeSZ, 5 < x<11) for IT-SOFCs: Structure and Conductivity Studies, Scripta Mater., 2016, 121, p 10-13 R.R. Monteiro and A.C.S. Sabioni, Preparation of Mullite Whiskers Derived from Topaz Doped with Rare Earth Oxides for Applications in Composite Materials, Ceram. Int., 2016, 42(1), p 49-55 E. Yildiz, S. Yilmaz, and O. Turkoglu, The Production and Characterization of Ytterbium-Stabilized Zirconia Films for SOFC Applications, Int. J. Appl. Ceram. Technol., 2016, 13(1), p 100-107 V. Miguel-Pérez, A. Martínez-Amesti, M.L. Nó, J. Calvo-Angós, and M.I. Arriortua, EB-PVD Deposition of Spinel Coatings on Metallic Materials and Silicon Wafers, Int. J. Hydrog. Energy, 2014, 39(28), p 15735-15745 G.Y. Cho, Y.H. Lee, S.W. Hong, J. Bae, J. An, Y.B. Kim, and S.W. Cha, High-Performance Thin Film Solid Oxide Fuel Cells with Scandia-Stabilized Zirconia (ScSZ) Thin Film Electrolyte, Int. J. Hydrog. Energy, 2015, 40(45), p 15704-15708 M. Mirzaei, A. Simchi, M.A. Faghihi-Sani, and A. Yazdanyar, Electrophoretic Deposition and Sintering of a Nanostructured Manganese–Cobalt Spinel Coating for Solid Oxide Fuel Cell Interconnects, Ceram. Int., 2016, 42(6), p 6648-6656 C. Lamuta, G. Di Girolamo, and L. Pagnotta, Microstructural, Mechanical and Tribological Properties of Nanostructured YSZ Coatings Produced with Different APS Process Parameters, Ceram. Int., 2015, 41(7), p 8904-8914 A. Vardelle, C. Moreau, J. Akedo, H. Ashrafizadeh, C.C. Berndt, J.O. Berghaus, M. Boulos, J. Brogan, A.C. Bourtsalas, A. Dolatabadi, M. Dorfman, T.J. Eden, P. Fauchais, G. Fisher, F. Gaertner, M. Gindrat, R. Henne, M. Hyland, E. Irissou, E.H. Jordan, K.A. Khor, A. Killinger, Y.-C. Lau, C.-J. Li, L. Li, J. Longtin, N. Markocsan, P.J. Masset, J. Matejicek, G. Mauer, A. McDonald, J. Mostaghimi, S. Sampath, G. Schiller, K. Shinoda, M.F. Smith, A.A. Syed, N.J. Themelis, F.-L. Toma, J.P. Trelles, R. Vassen, and P. Vuoristo, The 2016 Thermal Spray Roadmap, J. Therm. Spray Technol., 2016, 25(8), p 1376-1440 M.C. Tucker, Progress in Metal-Supported Solid Oxide Fuel Cells: A Review, J. Power Sources, 2010, 195(15), p 4570-4582 P. Fauchais, A. Vardelle, and B. Dussoubs, Quo Vadis Thermal Spraying?, J. Therm. Spray Technol., 2001, 10(1), p 44-66 C.-J. Li, X.-J. Ning, and C.-X. Li, Effect of Densification Processes on the Properties of Plasma-Sprayed YSZ Electrolyte Coatings for Solid Oxide Fuel Cells, Surf. Coat. Technol., 2005, 190(1), p 60-64 M. Friis, C. Persson, and J. Wigren, Influence of Particle in-Flight Characteristics on the Microstructure of Atmospheric Plasma Sprayed Yttria Stabilized ZrO2, Surf. Coat. Technol., 2001, 141(2–3), p 115-127 C.-J. Li, G.-J. Yang, and C.-X. Li, Development of Particle Interface Bonding in Thermal Spray Coatings: A Review, J. Therm. Spray Technol., 2012, 22(2–3), p 192-206 S.-L. Zhang, T. Liu, C.-J. Li, S.-W. Yao, C.-X. Li, G.-J. Yang, and M. Liu, Atmospheric Plasma-Sprayed La0.8Sr0.2Ga0.8Mg0.2O3 Electrolyte Membranes for Intermediate-Temperature Solid Oxide Fuel Cells, J. Mater. Chem. A, 2015, 3(14), p 7535-7553 C. Zhang, W.Y. Li, M.P. Planche, C.X. Li, H. Liao, C.J. Li, and C. Coddet, Study on Gas Permeation Behaviour Through Atmospheric Plasma-Sprayed Yttria Stabilized Zirconia Coating, Surf. Coat. Technol., 2008, 202(20), p 5055-5061 C. Li, H. Guo, L. Gao, L. Wei, S. Gong, and H. Xu, Microstructures of Yttria-Stabilized Zirconia Coatings by Plasma Spray-Physical Vapor Deposition, J. Therm. Spray Technol., 2014, 24(3), p 534-541 Q.-Y. Chen, X.-Z. Peng, G.-J. Yang, C.-X. Li, and C.-J. Li, Characterization of Plasma Jet in Plasma Spray-Physical Vapor Deposition of YSZ Using a < 80 kW Shrouded Torch Based on Optical Emission Spectroscopy, J. Therm. Spray Technol., 2015, 24(6), p 1038-1045 C. Li, C. Li, H. Long, Y. Xing, X. Ning, C. Zhang, H. Liao, and C. Coddet, Characterization of Atmospheric Plasma-Sprayed Sc2O3-ZrO2 Electrolyte Coating, Solid State Ion., 2006, 177(19–25), p 2149-2153 E.-J. Yang, C.-J. Li, G.-J. Yang, C.-X. Li, and M. Takahashi, Effect of Intersplat Interface Bonding on the Microstructure Of Plasma-Sprayed Al2O3 Coating, IOP Conf. Ser. Mater. Sci. Eng., 2014, 61, p 012022 S.-W. Yao, C.-J. Li, J.-J. Tian, G.-J. Yang, and C.-X. Li, Conditions and Mechanisms for the Bonding of a Molten Ceramic Droplet to a Substrate after High-Speed Impact, Acta Mater., 2016, 119, p 9-25 A.J. Jacobson, Materials for Solid Oxide Fuel Cells, Chem. Mater., 2010, 22(3), p 660-674 H. Sun, Y. Chen, F. Chen, Y. Zhang, and M. Liu, High-Performance Solid Oxide Fuel Cells Based on a Thin La0.8Sr0.2Ga0.8Mg0.2O3-δ Electrolyte Membrane Supported by a Nickel-Based Anode of Unique Architecture, J. Power Sources, 2016, 301, p 199-203 Y. Liu, S.-I. Hashimoto, H. Nishino, M. Mori, Y. Funahashi, Y. Fijishiro, A. Hirano, N. Imanishi, and Y. Takeda, Development of Micro-Tubular SOFCs with an Improved Performance via Nano-Ag Impregnation for Intermediate Temperature Operation, ECS Trans., 2007, 7, p 615 Z. Wang, K. Sun, S. Shen, X. Zhou, J. Qiao, and N. Zhang, Effect of Co-sintering Temperature on the Performance of SOFC with YSZ Electrolyte Thin Films Fabricated by Dip-Coating Method, J. Solid State Electrochem., 2010, 14(4), p 637-642 Q. Ma, J. Ma, S. Zhou, R. Yan, J. Gao, and G. Meng, A High-Performance Ammonia-Fueled SOFC Based on a YSZ Thin-Film Electrolyte, J. Power Sources, 2007, 164(1), p 86-89 H.Y. Jung, K.-S. Hong, H. Kim, J.-K. Park, J.-W. Son, J. Kim, H.-W. Lee, and J.-H. Lee, Characterization of Thin-Film YSZ Deposited via EB-PVD Technique in Anode-Supported SOFCs, J. Electrochem. Soc., 2006, 153(6), p A961 S.H. Chan and Z.T. Xia, Polarization Effects in Electrolyte/Electrode-Supported Solid Oxide Fuel Cells, J. Appl. Electrochem., 2002, 32(3), p 339-347 D.E. Vladikova, Z.B. Stoynov, A. Barbucci, M. Viviani, P. Carpanese, J.A. Kilner, S.J. Skinner, and R. Rudkin, Impedance Studies of Cathode/Electrolyte Behaviour in SOFC, Electrochim. Acta, 2008, 53(25), p 7491-7499 L. Bian, C. Duan, L. Wang, L. Zhu, R. O’Hayre, and K.-C. Chou, Electrochemical Performance and Stability of La0·5Sr0·5Fe0·9Nb0·1O3- δ Symmetric Electrode for Solid Oxide Fuel Cells, J. Power Sources, 2018, 399, p 398-405 K. Ahmed and K. Foger, Kinetics of Internal Steam Reforming of Methane on Ni/YSZ-Based Anodes for Solid Oxide Fuel Cells, Catal. Today, 2000, 63(2), p 479-487 P. Costamagna, Modeling of Solid Oxide Heat Exchanger Integrated Stacks and Simulation at High Fuel Utilization, J. Electrochem. Soc., 1998, 145(11), p 3995 S. Sunde, Monte Carlo Simulations of Polarization Resistance of Composite Electrodes for Solid Oxide Fuel Cells, J. Electrochem. Soc., 1996, 143(6), p 1930 N.Q. Minh, Solid Oxide Fuel Cell Technology—Features and Applications, Solid State Ion., 2004, 174(1), p 271-277