Self‐Powered Photodetectors Based on 2D Materials

Advanced Optical Materials - Tập 8 Số 1 - 2020
Hui Qiao1, Zongyu Huang1, Xiaohui Ren1, Shuhua Liu1, Yupeng Zhang2, Xiang Qi1, Han Zhang2
1Hunan Key Laboratory for Micro-Nano Energy Materials and Devices and School of Physics and Optoelectronic, Xiangtan University, Hunan, 411105 P. R. China
2Collaborative Innovation Center for Optoelectronic Science and Technology, Shenzhen University, Shenzhen, 518060 P. R. China

Tóm tắt

Abstract

Self‐powered photodetectors are considered as a new type of photodetectors enabling self‐powered photodetection without external power. The excellent photoresponsivity, fast photoresponse rate, low dark current, and large light on/off ratio of these photodetectors have attracted wide interest among scholars. 2D materials are widely used in self‐powered photodetectors due to their excellent optical and electrical properties, unique 2D structures, and their capabilities to exhibit excellent photodetection performance. According to the self‐driving mechanism of 2D material‐based self‐powered photodetectors, they are divided into three categories: p–n junction photodetectors, Schottky junction photodetectors, and photoelectrochemical photodetectors. From these three perspectives, the research progress of 2D material‐based self‐powered photodetectors is summarized in detail here. Research reports indicate that 2D material‐based self‐powered photodetectors have excellent self‐powered photoresponse behavior, good light on/off characteristics, and wideband spectral response ranges. The excellent photoresponse performance of 2D material‐based self‐powered photodetectors facilitates their potential applications in the field of optoelectronic devices. In particular, self‐powered photodetectors have great potential as novel emerging self‐driven optoelectronic devices. Finally, directions for the further development of 2D material‐based self‐powered photodetectors are anticipated.

Từ khóa


Tài liệu tham khảo

10.1126/science.1102896

10.1002/adfm.200901007

10.1038/nnano.2010.89

10.1038/nmat4170

10.1021/acs.chemrev.5b00620

10.1021/nl400258t

10.1002/anie.201000009

10.1021/nl903868w

10.1021/nn1003937

10.1016/j.ceramint.2018.08.166

10.1364/OL.39.004591

10.1364/OE.22.022841

10.1103/PhysRevB.68.104102

10.1021/acsnano.5b00655

10.1002/adom.201800224

10.1364/OE.23.011183

10.1038/nnano.2014.35

10.1002/aenm.201702093

10.1002/adom.201700026

10.1002/smll.201502169

10.1088/0957-4484/27/46/462001

10.1103/RevModPhys.81.109

10.1039/C6CP02424F

10.1002/lpor.201700229

10.1002/lpor.201700221

10.1103/PhysRevB.90.085402

10.1038/nphoton.2014.271

10.1021/nn405037s

10.1016/j.apmt.2018.12.010

10.1021/acsami.7b09889

10.1021/acsnano.6b03458

10.1038/nphoton.2015.216

10.1016/j.orgel.2016.03.023

10.1002/adma.201502023

Abrahamian Y., 2012, Methods and Materials for Remote Sensing: Infrared Photo‐detectors, Radiometers and Arrays

10.1002/adma.201600032

10.1364/OE.24.000134

10.1021/acs.nanolett.5b02559

10.1021/acsami.8b07189

10.1021/nn300889c

10.1002/adma.201503873

10.1002/smll.201701848

10.1002/adma.201003156

10.1021/acsami.6b09943

10.1021/acsami.5b11956

10.1002/smll.201501298

10.1039/C5NR06167A

10.1016/j.nanoen.2012.05.003

10.1002/adfm.201606834

10.1002/adma.201703694

10.1002/admi.201701189

10.1016/j.nanoen.2018.12.004

10.1039/C5NR09111J

10.1038/srep03826

10.1002/adma.201204488

10.1063/1.3524231

10.1186/1556-276X-8-188

10.1002/celc.201300053

10.1103/PhysRevLett.98.186806

10.1038/nphoton.2016.45

10.1126/science.1157996

10.1126/science.1235126

10.1038/ncomms4782

10.1016/j.ceramint.2014.05.107

10.1016/j.carbon.2017.05.033

10.1038/ncomms10546

10.1002/pssr.201800482

10.1364/OE.22.007249

10.1021/nn2024557

10.1002/adma.201104798

10.1038/srep06346

10.1021/acs.jpcc.6b06673

10.1016/j.optcom.2015.11.061

10.1038/ncomms4813

10.1039/C6NR04020A

10.1039/C8NR07788F

10.1088/1674-1056/27/8/087308

10.1002/adma.201703458

10.1364/OE.24.025933

10.1021/cr300263a

10.1126/science.1156965

10.1021/nl201874w

10.1039/C5CP04057D

10.1126/science.1194975

10.1039/c2jm15973b

10.1021/ar4002312

10.1021/nn5016242

10.1002/adma.201803031

10.1021/acsphotonics.8b01335

10.1126/science.1171245

10.1021/ja109793s

10.1021/ja4013485

10.1038/nmat3695

10.1038/nmat4384

10.1002/adma.201702359

10.1038/ncomms13352

10.1002/anie.201703871

10.1073/pnas.0502848102

10.1146/annurev-matsci-070214-020901

10.1021/acsnano.5b05040

10.1038/srep02598

10.1039/c3cs60407a

10.1021/nl5009037

10.1021/acsnano.5b05596

10.1143/APEX.3.054201

I.Lauer A.Majumdar P. M.Solomon S. J.Koester Google Patents 2012.

J.‐H.Liang H.‐S.Tsai W.‐Y.Woon Google Patents 2018.

10.1038/nnano.2014.222

10.1038/nmat4064

10.1002/adfm.201706860

10.1021/am505015j

10.1002/admt.201800742

10.1002/adma.201402471

10.1002/anie.201611127

10.1002/adma.201802478

10.1016/j.apsusc.2018.03.021

10.1021/acssensors.6b00801

10.1002/adma.201504478

10.1021/acs.nanolett.6b02104

Geim A. K., 2010, Nanoscience and Technology: A Collection of Reviews from Nature Journals

Petruk O., 2014, Recent Advances in Automation, Robotics and Measuring Techniques

10.1038/nmat2003

10.1038/nnano.2008.268

10.1038/nphys1420

10.4028/www.scientific.net/SSP.156-158.499

10.1088/1361-6463/aa8ac6

10.1039/C5CS90037A

10.1002/adma.201505597

10.1021/ar5002846

10.1039/C5CS00517E

10.1038/nnano.2012.193

10.1021/nn500064s

10.1088/1361-6528/ab0caf

10.1021/nl301485q

10.1103/PhysRevLett.105.136805

10.1021/nl4014748

10.1103/PhysRevB.85.205302

10.1016/j.physe.2018.03.016

10.1038/s41570-016-0014

Liu H., 2014, ACS Nano, 8, 403

10.1103/PhysRevB.90.081408

10.1021/nl5032293

10.1021/nl5008085

10.1038/nnano.2014.325

10.1088/0953-8984/25/39/395305

10.1038/srep15899

10.1002/adma.201605299

10.1002/adma.201603276

10.1103/PhysRevB.89.201408

10.1103/PhysRevB.89.235319

10.3788/COL201816.020002

10.1002/adom.201701166

10.1038/nnano.2013.100

10.1038/nnano.2014.215

10.1016/j.mattod.2019.04.019

10.1002/adfm.201804388

10.1038/nnano.2009.292

10.1038/nnano.2014.31

10.1038/nphoton.2010.40

10.1038/ncomms2830

10.1021/acsphotonics.8b01128

10.1016/j.snb.2014.10.124

10.1103/PhysRevB.81.155413

10.1021/acs.jpcc.9b00466

10.1002/smll.201403508

10.1002/adma.201506352

10.1002/adma.201704611

10.1002/smll.201703754

10.1021/am5054338

10.1021/am503442c

10.1039/c2ra22092j

10.1021/acsnano.6b00980

10.1002/adma.201506004

10.1002/smll.201600835

10.1002/adfm.201401504

10.1021/nl502075n

10.1021/acsami.5b10001

10.1038/ncomms5651

10.1002/smll.201501206

10.1016/j.mattod.2015.11.003

10.1038/nature12385

10.1126/science.aac9439

10.1002/aelm.201600298

10.1126/science.1218461

10.1002/adom.201700490

10.1038/nnano.2014.150

10.1088/1361-6528/aa749e

10.1002/adma.201504090

10.1016/j.nanoen.2016.04.030

10.1021/nn503284n

10.1126/science.aab4097

10.1021/cm504268j

10.1088/2053-1583/3/4/041001

10.1016/j.nanoen.2018.06.049

10.1021/acs.chemmater.7b00210

10.1038/srep12014

10.1002/adfm.201604638

10.1038/srep44243

10.1016/j.nanoen.2016.03.011

10.1039/C8NR04004D

10.1021/acsnano.6b01839

10.1021/nl204512x

10.1038/nphoton.2013.253

10.1038/nphoton.2008.30

10.1021/acsami.8b02233

10.1038/srep01634

10.1002/adfm.201802954

10.1021/acsnano.8b04931

10.3390/nano7120454

Sharma B., 2013, Metal‐Semiconductor Schottky Barrier Junctions and Their Applications

10.1088/1361-6528/aa9172

10.1088/1361-6528/aada68

10.1021/acsami.6b14305

10.1063/1.4966899

10.1021/am4026505

10.1109/LED.2013.2275169

10.1039/C8TC02786B

10.1039/c2jm15913a

10.1039/C8NR00158H

10.1002/adma.201506140

10.1039/C8NR00594J

10.1039/C3CS60378D

10.1073/pnas.1714421115

10.1364/OE.23.020030

10.1002/aenm.201700396

10.1002/anie.201607393

10.1002/anie.201710859

10.1016/j.apsusc.2018.10.127

10.1039/C7NR03318D

10.1021/jacs.8b00719

10.1021/acsnano.8b06723

10.1039/C8TB00729B

10.1038/ncomms12967

10.1039/C7MH00543A

10.1039/C8TB01349G

10.1038/ncomms5458

10.1103/PhysRev.92.580

10.1039/C7TC00071E

10.1063/1.4868132

10.1002/adma.201703811

10.1002/anie.201512038

10.1103/PhysRevB.33.6177

10.1016/j.cap.2015.11.010

10.1002/anie.201604784

10.1002/adma.201702095

10.1002/adfm.201705833

10.1088/1361-6528/aab6ee

10.1021/acs.nanolett.8b03689

10.1021/acsami.7b17247

10.1016/j.vacuum.2018.04.002

10.1038/ncomms8809

10.1002/adma.201302616

10.1088/2053-1583/aaa6eb

10.1002/adfm.201705237

10.1039/C7NR09046C

10.1039/C8TC03284J

10.1088/2053-1583/2/3/035011

10.1007/s10854-019-00689-3

10.1016/j.optcom.2017.07.033