Self-Duality of Markov Processes and Intertwining Functions

Chiara Franceschini1, Cristian Giardinà2, Wolter Groenevelt3
1University of Ferrara, via Macchiavelli 30, 44121, Ferrara, Italy
2University of Modena and Reggio Emilia, via G. Campi 213/b, 41125, Modena, Italy
3Technische Universiteit Delft, DIAM, P.O. Box 5031, 2600 GA, Delft, The Netherlands

Tóm tắt

Từ khóa


Tài liệu tham khảo

Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encycl. Math. Appl. 71 Cambridge University Press (1999)

Belitsky, V., Schütz, G.M.: Self-duality for the two-component asymmetric simple exclusion process. J. Math. Phys. 56(8), 083302 (2015)

Belitsky, V., Schütz, G.M.: Quantum algebra symmetry of the ASEP with second-class particles. J. Stat. Phys. 161(5), 821–842 (2015)

Belitsky, V., Schütz, G.M.: Self-duality and shock dynamics in the n-species priority ASEP. Stochastic Processes and their Applications 128(4), 1165–1207 (2017)

Bernardin, C.: Superdiffusivity of asymmetric energy model in dimensions 1 and 2. J. Math. Phys. 49(10), 103301 (2008)

Borodin, A.: On a family of symmetric rational functions. Adv. Math. 306, 973–1018 (2017)

Borodin, A., Corwin, I., Gorin, V.: Stochastic six-vertex model. Duke Math. J. 165(3), 563–624 (2016)

Borodin, A., Corwin, I., Sasamoto, T.: From duality to determinants for q-TASEP and ASEP. Ann. Probab. 42(6), 2314–2382 (2014)

Carinci, G., Giardinà, C., Giberti, C., Redig, F.: Duality for stochastic models of transport. J. Stat. Phys. 152(4), 657–697 (2013)

Carinci, G., Giardin, C., Redig, F., Sasamoto, T.: A generalized asymmetric exclusion process with U q ( s l 2 ) $U_q(\mathfrak {sl}_2)$ stochastic duality. Probab. Theory Relat. Fields 166, 887–933 (2016)

Carinci, G., Giardinà, C., Redig, F., Sasamoto, T.: Asymmetric Stochastic Transport Models with U q ( s u ( 1 , 1 ) ) ${\mathscr{U}}_q (\mathfrak {su}(1, 1))$ Symmetry. J. Stat. Phys. 163(2), 239–279 (2016)

Carinci, G., Giardinà, C., Giberti, C., Redig, F.: Dualities in population genetics: a fresh look with new dualities. Stochastic Processes and their Applications 125(3), 941–969 (2015)

Chen, Z., de Gier, J., Wheeler, M.: Integrable stochastic dualities and the deformed Knizhnik-Zamolodchikov equation. Preprint arXiv: 1709.06227 . International Mathematics Research Notices, rny159 (2017)

Corwin, I., Petrov, L.: Stochastic higher spin vertex models on the line. Commun. Math. Phys. 343(2), 651–700 (2016)

Corwin, I., Shen, H., Tsai, L.-C.: ASEP(q, j) converges to the KPZ equation (2016)

De Masi, A., Presutti, E.: Mathematical methods for hydrodynamic limits. Springer (2006)

Franceschini, C., Giardinà, C.: Stochastic Duality and Orthogonal Polynomials. arXiv: 1701.09115 (2017)

Giardinà, C., Kurchan, J.: The Fourier law in a momentum-conserving chain. J. Stat. Mech: Theory Exp. 05(2005), P05009 (2005)

Giardinà, C., Kurchan, J., Redig, F.: Duality and exact correlations for a model of heat conduction. J. Math. Phys. 48(3), 033301 (2007)

Giardinà, C., Kurchan, J., Redig, F., Vafayi, K.: Duality and hidden symmetries in interacting particle systems. J. Stat. Phys. 135(1), 25–55 (2009)

Giardinà, C., Redig, F., Vafayi, K.: Correlation inequalities for interacting particle systems with duality. J. Stat. Phys. 141(2), 242–263 (2010)

Groenevelt, W.: Orthogonal stochastic duality functions from Lie algebra representations. arXiv: 1709.05997 (2017)

Jansen, S., Kurt, N.: On the notion(s) of duality for Markov processes. Probab. Surv. 11, 59–120 (2014)

Keisling, J.D.: An ergodic theorem for the symmetric generalized exclusion process. Markov Process. Relat. Fields 4, 351–379 (1998)

Kipnis, C., Marchioro, C., Presutti, E.: Heat flow in an exactly solvable model. J. Stat. Phys. 27(1), 65–74 (1982)

Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and their q-Analogues. Springer (2010)

Koelink, H.T., Van der Jeugt, J.: Convolution for orthogonal polynomials from Lie and quantum algebra representations. SIAM J. Math. Annal. 29, 794–822 (1998)

Kuan, J.: Stochastic duality of ASEP with two particle types via symmetry of quantum groups of rank two. J. Phys. A Math. Theor. 49(11), 115002 (2016)

Kuan, J.: A Multi-species ASEP(q, j) and q-TAZRP with stochastic duality. arXiv: 1605.00691 (2016)

Kuan, J.: An algebraic construction of duality functions for the stochastic U q ( A n ( 1 ) ) $ {U_q} (A_n^{(1)})$ vertex model and its degenerations. arXiv: 1701.04468 (2017)

Liggett, T.M.: Interacting particles systems. Springer (1985)

Mangazeev, V.: On the Yang–Baxter equation for the six-vertex model. Nucl. Phys. B 882, 70–96 (2014)

Möhle, M.: The concept of duality and applications to Markov processes arising in neutral population genetics models. Bernoulli 5(5), 761–777 (1999)

Redig, F., Sau, F.: Duality functions and stationary product measures. arXiv: 1702.07237 (2017)

Sasamoto, T., Spohn, H.: One-dimensional Kardar-Parisi-Zhang equation: an exact solution and its universality. Phys. Rev. Lett. 104(23), 230602 (2010)

Schütz, G.M.: Duality relations for asymmetric exclusion processes. J. Stat. Phys. 86(5), 1265–1287 (1997)

Schütz, G.M., Sandow, S.: Non-Abelian symmetries of stochastic processes: Derivation of correlation functions for random-vertex models and disordered-interacting-particle systems. Phys. Rev. E 49(4), 2726 (1994)

Spitzer, F.: Interaction of Markov processes. Advances in Mathematics 5(2), 246–290 (1970)

Spohn, H.: Long range correlations for stochastic lattice gases in a non-equilibrium steady state. J. Phys. A Math. Gen. 16(18), 4275 (1983)