Self-Dual Codes Over Chain Rings
Tóm tắt
In this paper, we study self-dual codes over commutative Artinian chain rings. Let R be such a ring, x be a generator of the unique maximal ideal of R and $$a\in {\mathbb {N}}_0 $$ maximal such that $$x^a\ne 0$$. A code C over R of length t is an R-submodule of the free module $$R^t$$. Multiplying powers of x to C defines the finite chain of subcodes $$\begin{aligned} C \supseteq C^{(1)} := C x \supseteq C^{(2)} := C x^2 \supseteq \dots \supseteq C^{(a)} := Cx^a \supseteq \lbrace 0 \rbrace . \end{aligned}$$In this paper, we show that if C is a self-dual code in $$R^t$$, then $$C^{(a)}$$ is a (hermitian) self-dual code over the residue field $${\mathbb {F}}= R / \langle x \rangle $$ if and only if C a free R-module (thus isomorphic to $$R^{\frac{t}{2}}$$). In this case, all codes $$C^{(i)}$$ are self-dual codes in suitable bilinear or Hermitian spaces $$W_i$$ over $${\mathbb {F}}$$ and we describe a method to construct all lifts C of a given self-dual code $$C^{(a)}$$ over $${\mathbb {F}}$$ that are self-dual, free codes over R. We apply this technique to codes over finite fields of characteristic p admitting an automorphism whose order is a power of p. For illustration, we show that the well-known Pless Code $$P_{36}$$ is the only extremal, ternary code of length 36 with an automorphism of order 3, strengthening a result of Huffman, who showed the assertion for all prime orders $$\ge 5$$.
Tài liệu tham khảo
Borello, M., Nebe, G.: On involutions in extremal self-dual codes and the dual distance of semi self-dual codes. Finite Fields Appl. 33, 80–89 (2015)
Borello, M., Willems, W.: Automorphisms of order \(2p\) in binary self-dual extremal codes of length a multiple of 24. IEEE Trans. Inform. Theory 59(6), 3378–3383 (2013)
Bouyuklieva, S.: On the automorphisms of order 2 with fixed points for the extremal self-dual codes of length 24 m. Des. Codes Cryptogr. 25(1), 5–13 (2002)
Bouyuklieva, S.: A method for constructing self-dual codes with an automorphism of order 2. IEEE Trans. Inform. Theory 46(2), 496–504 (2000)
Conway, J.H., Pless, V.: On primes dividing the group order of a doubly-even (72; 36; 16) code and the group order of a quaternary (24; 12; 10) code. Discrete Math. 38, 143–156 (1982)
Eisenbarth, S.: Gitter und Codes über Kettenringen. Thesis. RWTH Aachen University (2019)
Hammons Jr., A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Solé, P.: The \({\bf Z}_4\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inform. Theory 40(2), 301–319 (1994)
Harada, M., Munemasa, A.: Database of ternary maximal self-orthogonal codes. http://www.math.is.tohoku.ac.jp/~munemasa/research/codes/mso3.htm. Accessed 20 Oct 2018
Huffman, W.C.: Automorphisms of codes with applications to extremal doubly even codes of length 48. IEEE Trans. Inform. Theory 28(3), 511–521 (1982)
Huffman, W.C.: On extremal self-dual ternary codes of lengths 28 to 40. IEEE Trans. Inform. Theory 38(4), 1395–1400 (1992)
Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)
Kiermaier, M.: There is no self-dual \(\mathbb{Z}_4\)-linear code whose gray image has the parameters \((72,2^{36},16)\). IEEE Trans. Inform. Theory 59(6), 3384–3386 (2013)
Meyer, A.: On dual extremal maximal self-orthogonal codes of type I-IV. Adv. Math. Commun. 4(4), 579–596 (2010)
Nebe, G.: An extremal \([72,36,16]\) binary code has no automorphism group containing \(Z_2\times Z_4\), \(Q_8\), or \(Z_{10}\). Finite Fields Appl. 18(3), 563–566 (2012)
Nebe, G.: On extremal self-dual ternary codes of length 48. Int. J. Comb., Art. ID 154281, 9 (2012)
Pless, V.: Symmetry codes over \({\rm GF}(3)\) and new five-designs. J. Combin. Theory Ser. A 12, 119–142 (1972)
Rains, E.: Bounds for self-dual codes over \(Z_4\). Finite Fields Appl. 6(2), 146–163 (2000)
Sloane, N.J.A.: Is there a (72; 36), d = 16 self-dual code? IEEE Trans. Inform. Theory 19, 251 (1973)