Selenium-Based Novel Epigenetic Regulators Offer Effective Chemotherapeutic Alternative with Wider Safety Margins in Experimental Colorectal Cancer

Biological Trace Element Research - Tập 200 - Trang 635-646 - 2021
Preety Ghanghas1, Monika Sharma2, Dhimant Desai3, Kaisar Raza4, Aman Bhalla5, Pramod Kumar4, Dipika Narula5, Shantu Amin3, Sankar Nath Sanyal1, Naveen Kaushal1
1Department of Biophysics, Panjab University, Chandigarh, India
2Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Nagar, India
3Department of Pharmacology, The Pennsylvania State University, Hershey, USA
4Department of Pharmacy, Central University of Rajasthan, Ajmer, India
5Department of Chemistry, Panjab University, Chandigarh, India

Tóm tắt

Colorectal cancer (CRC) is a major cause of morbidity and mortality worldwide. Despite the critical involvement of epigenetic modifications in CRC, the studies on the chemotherapeutic efficacy of various epigenetic regulators remain limited. Considering the key roles of histone deacetylases (HDACs) in the regulation of diverse cellular processes, several HDAC inhibitors are implied as effective therapeutic strategies. In this context, suberoylanilide hydroxamic acid (SAHA), a 2nd-generation HDAC inhibitor, showed limited efficacy in solid tumors. Also, side effects associated with SAHA limit its clinical application. Based on the redox-modulatory and HDAC inhbitiory activities of essential trace element selenium (Se), the anti-carcinogenic potential of Se substituted SAHA, namely, SelSA-1 (25 mg kg−1), was screened for it enhanced anti-tumorigenic role and wider safety profiles in DMH-induced CRC in Balb/c mice. A multipronged approach such as in silico, biochemical, and pharmacokinetics (PK) has been used to screen, characterize, and evaluate these novel compounds in comparison to existing HDAC inhibitor SAHA. This is the first in vivo study indicating the chemotherapeutic potential of Se-based novel epigenetic regulators such as SelSA-1 in any in vivo experimental model of carcinogenesis. Pharmcological and toxicity data indicated better safety margins, bioavailability, tolerance, and elimination rate of SelSA-1 compared to classical HDAC inhibitor SAHA. Further, histological and morphological evidence demonstrated enhanced chemotherapeutic potential of SelSA-1 even at lower pharmacological doses than SAHA. This is the first in vivo study suggesting Se-based novel epigenetic regulators as potential chemotherapeutic alternatives with wider safety margins and enhanced anticancer activities.

Tài liệu tham khảo

Gandin V, Khalkar P, Braude J, Fernandes AP (2018) Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radic Biol Med 127:80–97. https://doi.org/10.1016/j.freeradbiomed.2018.05.001 Narod SA, Huzarski T, Jakubowska A, Gronal J, Cybulski C et al (2019) Serum selenium level and cancer risk: a nested case-control study. Hered Cancer Clin Pract 17:1–7 Lener MR, Gupta S, Scott RJ, Tootsi M, Kulp M et al (2013) Can selenium levels act as a marker of colorectal cancer risk? BMC Cancer 13:214. https://doi.org/10.1186/1471-2407-13-214 Saxena A, Fayad R, Kaur K, Truman S, Greer J et al (2017) Dietary selenium protects adiponectin knockout mice against chronic inflammation induced colon cancer. Cancer Biol Ther 18:257–267. https://doi.org/10.1080/15384047.2016.1276130 Speckmann B, Grune T (2015) Epigenetics effects of selenium and their implications for health. Epigeetics 10:179–190. https://doi.org/10.1080/15592294.2015.1013792 Eckschlager T, Plch J, Stiborova M, Hrabeta J (2017) Histone deacetylase inhibitor as anticancer drugs. Int J Mol Sci 18:1414. https://doi.org/10.3390/ijms18071414 Zhang C, Richon V, Ni X, Talpur R, Duvic M (2005) Selective induction of apoptosis by histone deacetylase inhibitor SAHA in cutaneous T-cell lymphoma cells: relevance to mechanism of therapeutic action. J Invest Dermatol 125:1045–1052. https://doi.org/10.1111/j.0022-202X.2005.23925.x You BR, Han BR, Park WH (2017) Suberoylanilidehydroxamic acid increases anticancer effect of tumor necrosis factor-α through up-regulation of TNF receptor 1 in lung cancer cells. Oncotarget 8:17726–17737. https://doi.org/10.18632/oncotarget.14628 Gluud M, Fredholm S, Blumel E, Willerslev-Olsen (2020) MicroRNA-93 targets p21 and promotes proliferation in mycosis fungoides T cells. Dermatol. https://doi.org/10.1159/000505743 Goey AK, Sissung TM, Peer CJ, Figg WD (2016) Pharmacogenomics and histone deacetylase inhibitors. Pharmacogenomics 17:1807–1815. https://doi.org/10.2217/pgs-2016-0113 Bubna AK (2015) Vorinostat—an overview. Indian J Dermatol 60:419. https://doi.org/10.4103/0019-5154.160511 Narayan V, Ravindra KC, Liao C, Kaushal N, Carlson BA et al (2015) Epigenetic regulation of inflammatory gene expression in macrophages by selenium. J Nutr Biochem 26:138–145. https://doi.org/10.1016/j.jnutbio.2014.09.009 Duvic M, Talpur R, Ni X, Zhang C, Hazarika P et al (2007) Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 109:31–39. https://doi.org/10.1182/blood-2006-06-025999 Desai D, Salli U, Vrana KE, Amin S (2010) SelSA, selenium analogs of SAHA as potent histone deacetylase inhibitors. Bioorg Med Chem Lett 20:2044–2047. https://doi.org/10.1016/j.bmcl.2009.07.068 Tang C, Du Y, Liang Q, Cheng Z, Tian J et al (2018) Development of a novel ferrocenyl histone deacetylase inhibitor for triple-negative breast cancer therapy. Organometallics 37:2368–7235. https://doi.org/10.1021/acs.organomet.8b00354 Glaser KB (2007) HDAC inhibitors: clinical update and mechanism-based potential. Biochem Pharmacol 74:659–671. https://doi.org/10.1016/j.bcp.2007.04.007 Wang D, Wang H, Shi Q, Katkuri S, Walhi V et al (2004) Prostaglandin E(2) promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator-activated receptor delta. Cancer Cell 6:285–295. https://doi.org/10.1016/j.ccr.2004.08.011 Butler LM, Aqus DB, Scher HI, Higgins B, Rose A et al (2000) Suberoylanilidehydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res 60:5165–5170 Cai YY, Yap CW, Wang Z, Ho PC, Chan SY et al (2010) Solubilization of vorinostat by cyclodextrins. J Clin Pharm Ther 35:521–526. https://doi.org/10.1111/j.1365-2710.2009.01095.x Balasubramaniam P, Malathi A (1992) Comparative study of hemoglobin estimated by Drabkin’s and Sahli;s methods. J Postgrad Med 38:8–9 Karmen A, Wroblewski F, Ladue JS (1955) Transaminase activity in human blood. J Clin Invest 34:126–131 Wroblewski F, Ladue JS (1956) Serum glutamic pyruvic transaminase (SGP-T) in hepatic disease: a preliminary report. Ann Intern Med 45:801–811 Tietz NW, Burtis CA, Duncan P, Ervin K, Petitclerc CJ et al (1983) A refererence method for measurement of alkaline phosphatase activity in human serum. Clin Chem 29:751–761 Chaney AL, Marbach EP (1962) Modified reagents for determination of urea and ammonia. Clin Chem 8:130–132 Jaffe M (1886) Ueber den N iederschlag welchen pikrinsaure in normalen harn erzeugt und eine neue reaction des kreatinins. Z Physiol Chem 10:391–400 Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E et al (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4:17. https://doi.org/10.1186/1758-2946-4-17 Somoza JR, Skene RJ, Katz BA, Mol C, Dho J et al (2004) Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure 2:1325–1334. https://doi.org/10.1016/j.str.2004.04.012 Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334 Kaur J, Sanyal SN (2011) Diclofenac, aselective COX-2 inhibitor, inhibits DMH-induced colon tumorigenesis through suppression of MCP-1, MIP-1α and VEGF. Mol Carcinog 50:707–718. https://doi.org/10.1002/mc.20736 Hajhashemi V, Sadeghi H, Minaiyan M, Movahedian A, Talebi A et al (2011) Effect of fluvoxamine on carrageenan-induced paw edema in rats evaluation of the action sites. Iran J Pharm Res 10:611–618 Bradley PP, Prebat DA, Christensen RD, Rothstein G (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol 78:206–209. https://doi.org/10.1111/1523-1747.ep12506462 Ghanghas P, Jain S, Rana C, Sanyal SN (2016) Chemoprevention of colon cancer through inhibition of angiogenesis and induction of apoptosis by nonsteroidal anti-inflammatory drugs. J Environ Pathol Toxicol Oncol. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2016015704 Humanson GL (1961) In:Basic procedures-animal tissue technique. Johns Hopkins University Press (Part-1):130-132. Ghanghas P, Jain S, Rana C, Sanyal SN (2016) Chemopreventive action of non-steroidal anti-inflammatory drugs on the inflammatory pathways in colon cancer. Biomed Pharmacother 78:239–247. https://doi.org/10.1016/j.biopha.2016.01.024 Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–168 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275 Ishihama K, Yamakawa M, Semba S, Takeda H, Kawata S (2007) Expression of HDAC1 and CBP/p7300 in human colorectal carcinomas. J Clin Pathol 60:1205–1210. https://doi.org/10.1136/jcp.2005.029165 Huang L (2006) Targeting histone deacetylases for the treatment of cancer and inflammatory diseases. J Cell Physiol 209:611–616. https://doi.org/10.1002/jcp.20781 Moradei O, Maroun CR, Paquin I, Vaisburg A (2005) Histone deacetylase inhibitors: latest developments, trends and prospects. Curr Med Chem Anticancer Agents 5:529–560. https://doi.org/10.2174/1568011054866946 Anantharaju PG, Reddy DB, Padukudru MA, Chitturi CMK, Vimalambike MG (2017) Induction of colon and cervical cancer cell death by cinnamic acid derivatives is mediated through the inhibition of histone deacetylase (HDAC). PLOS One 12:e0186208. https://doi.org/10.1371/journal.pone.0186208 Bhandari R, Kaur IP (2013) Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid-solid lipid nanoparticles. Int J Pharm 441(1-2):202–212. https://doi.org/10.1016/j.ijpharm.2012.11.042 Kumar P, Sharma G, Gupta V, Kaur R, Thakur K et al (2019) Oral delivery of methylthioadenosine to the brain employing solid lipid nanoparticles: pharmacokinetic, behavioral, and histopathological evidences. AAPS Pharm Sci Tech 20:74. https://doi.org/10.1208/s12249-019-1296-0 Palmieri D, Lockman PR, Thomas FC, Hua E, Herring J et al (2009) Vorinostat inhibits brain metastatic colonization in a model of triple-negative breast cancer and induces DNA double-strand breaks. Clin Cancer Res 15:148–157. https://doi.org/10.1158/1078-0432.CCR-09-1039 Saelen MG, Ree AH, Kristian A, Fleten KG, Furre T et al (2012) Radiosensitization by the histone deacetylase inhibitor vorinostat under hypoxia and with capecitabine in experimental colorectal carcinoma. Radiat Oncol 7:165. https://doi.org/10.1186/1748-717X-7-165 Carew JS, Median EC, Esquvel JA, Mahalingam D, Swords R et al (2010) Autophagy inhibition enhances vorinostat-induced apoptosis via ubiquitinated protein accumulation. J Cell Mol Med 14:2448–2459. https://doi.org/10.1111/j.1582-4934.2009.00832.x Claerhout S, Lim JY, Choi W, Park YY, Park YY, Kim K et al (2011) Gene expression signature analysis identifies vorinostat as a candidate therapy for gastric cancer. PLoS ONE 6:e24662. https://doi.org/10.1371/journal.pone.0024662 Richon VM (2006) Cancer biology: mechanism of antitumour action of vorinostat (suberoylanilide hydroxamic acid), a novel histone deacetylase inhibitor. Br J Cancer 95:S2–S6. https://doi.org/10.1038/sj.bjc.6603463 Calder EDD, Skwarska A, Sneddon D, Folkes LK, Mistry IN, Conway SJ, Hammond EM (2020) Hypoxia -activated pro-drugs of the KDAC inhibitor vorinostat (SAHA). Tetrahedron 76. https://doi.org/10.1016/j.tet.2020.131170 Andersen CL, McMullin MF, Ejerblad E, Zweegman S, Harriso C et al (2013) A phase II study of vorinostat (MK-0683) in patients with polycythaemiavera and essential thrombocythaemia. Br J Haematol 162:498–508. https://doi.org/10.1111/bjh.12416 Kaur R, Thakur S, Rastogi P, Kaushal N (2018) Resolution of Cox mediated inflammation by Se supplementation in mouse experimental model of colitis. PLoS One 13:e0201356. https://doi.org/10.1371/journal.pone.0201356 Gandhi UH, Kaushal N, Kodihalli CR, Hegde S, Nelson SM et al (2011) Selenoprotein-dependent upregulation of hematopoietic prostaglandin D2 synthase in macrophages is mediated through the activation of peroxisome proliferator-activated receptor (PPAR)-γ. J Biol Chem 286:27471–27482. https://doi.org/10.1074/jbc.M111.260547 Zhang CL, Zhang X, Duvic M (2012) Class I HDAC inhibitor entinstat alone and in combination with bexarotene induce apoptosis in cutaneous T-cell lymphoma cells: potential role for NF-kB signalling: CS11-4. J Dermatol 39:1007–1017. https://doi.org/10.1111/j.1346-8138.2012.01623.x Chong W, Li Y, Liu B, Liu Z, Zhao T et al (2012) Anti-inflammatory properties of histone deacetylase inhibitor: a mechanistic study. J Trauma Acute Care Surg 72:347–353. https://doi.org/10.1097/TA.0b013e318243d8b2 Fang S, Menq X, Zhang Z, Wang Y, Liu Y et al (2016) Vorinostat modulates the imbalance of T cell subsets, suppresses macrophages activity, and ameliorates experimental autoimmune uveoretinitis. NeuroMolecular Med 18:134–145. https://doi.org/10.1007/s12017-016-8383-0 Lohman RJ, Lyer A, Fairlie TJ, Cotterell A, Gupta P et al (2016) Differential anti-inflammatory activity of HDAC inhibitors in human macrophages and rat arthritis. J Pharmacol Exp Ther 356:387–396. https://doi.org/10.1124/jpet.115.229328 Petruccelli LA, Dupere-Richer D, Pettersson F, Retrouvey H, Skoulikas S et al (2011) Vorinostat induces reactive oxygen species and DNA damage in acute myeloid leukemia cells. PLoS One 6:20987. https://doi.org/10.1371/journal.pone.0020987 Masadeh MM, Alzoubi KH, Al-Azzam SI, Al-Buhairan AM (2017) Possible involvement of ROS generation in vorinostat pretreatment induced enhancement of the antibacterial activity of ciprofloxacin. Clin Pharmacol 9:119–124. https://doi.org/10.2147/CPAA.S148448 Unqerstedt JS, Sowa Y, Xu WS, Shao Y, Dokmanovic M et al (2005) Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proc Natl Acad Sci USA 102(3):673–678 Kv A, Madhana RM, Js IC, Lahkar M, Sinha S et al (2018) Antidepressant activity of vorinostat is associated with amelioration of oxidative stress and inflammation in a corticosterone-induced chronic stress model in mice. Behav Brain Res 344:73–84. https://doi.org/10.1016/j.bbr.2018.02.009 Fernandes AP, Gandin V (2015) Selenium compounds as therapeutic agents in cancer. Biochim Biophys Acta 1850:1642–1660. https://doi.org/10.1016/j.bbagen.2014.10.008 Warrington JM, Kim JJ, Stahel P, Cieslar SR, Moorehead RA et al (2013) Selenized milk casein in the diet of BALB/c nude mice reduces growth of intramammary MCF-7 tumors. BMC Cancer 13:492. https://doi.org/10.1186/1471-2407-13-492 Guo CH, Hsia S, Hsiung DY, Chen PC (2015) Supplementation with selenium yeast on the prooxidant–antioxidant activities and antitumor effects in breast tumor xenograft-bearing mice. J Nutr Biochem 26:1568–1579. https://doi.org/10.1016/j.jnutbio.2015.07.028 Yuan C, Wang C, Wang J, Kumar V, Anwar F et al (2016) Inhibition on the growth of human MDA-MB-231 breast cancer cells in vitro and tumor growth in a mouse xenograft model by Se-containing polysaccharides from Pyracantha fortuneana. Nutr Res 36:1243–1254. https://doi.org/10.1016/j.nutres.2016.09.012 Bourens M, Fontanesi F, Soto I, Liu J (2013) Redox and reactive oxygen species regulation of mitochondrial cytochrome c oxidase biogenesis. Antioxid Redox Signal 19:1940–1952. https://doi.org/10.1089/ars.2012.4847 Dai L, He G, Zhang K, Guan X, Wang Y et al (2019) Trichostatin A induces p53-dependent endoplasmic reticulum stress in human colon cancer cells. Oncol Lett 17:660–667. https://doi.org/10.3892/ol.2018.9641