Selenate and Selenite Sorption on Iron Oxides An Infrared and Electrophoretic Study

Soil Science Society of America Journal - Tập 64 Số 1 - Trang 101-111 - 2000
Chunming Su1,2, Donald L. Suarez2
1ManTech Environmental Research Services Corp., R.S. Kerr Environmental Research Center, 919 Kerr Research Drive, Ada, OK, 74821-1198 USA
2USDA-ARS, U.S. Salinity Lab., 450 W. Big Springs Road, Riverside, CA, 92507-4617 USA

Tóm tắt

We studied selenate and selenite sorption by amorphous Fe oxide [am‐Fe(OH)3] and goethite (α‐FeOOH) as a function of time (25 min–96 h), pH (3–12), ionic strength (0.01–1.0 M NaCl), and total Se concentration (0.0001–1.0 M). We examined sorbed selenate and selenite by in situ attenuated total reflectance Fourier transform infrared (ATR–FTIR) spectroscopy, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, and electrophoresis to deduce sorption mechanisms. Sorption of both selenate and selenite reached equilibrium in <25 min and the sorption isotherm was not reversible. Increasing ionic strength decreased selenate sorption but did not affect selenite sorption. The presence of either selenate or selenite lowered the electrophoretic mobility (EM) and decreased the point of zero charge (PZC) of both sorbents, suggesting inner‐sphere complexation for both selenate and selenite species. Both in situ ATR–FTIR and DRIFT difference spectra showed bidentate complexes of selenate with am‐Fe(OH)3 The structure of selenite complexes in am‐Fe(OH)3 –solution interface was uncertain due to insensitivity of the in situ ATR–FTIR technique. The DRIFT spectra of selenite on am‐Fe(OH)3 showed ν3 splitting as evidence of complexation. The DRIFT spectra of selenite on goethite showed bridging bidentate complex of selenite. We conclude that the influence of ionic strength on Se sorption cannot be used as a criterion for distinguishing outer‐ vs. inner‐sphere complex formation.

Từ khóa


Tài liệu tham khảo

10.1021/es00026a013

10.2136/sssaj1987.03615995005100050009x

10.3891/acta.chem.scand.25-1250

10.1111/j.1365-2389.1986.tb00032.x

10.1111/j.1365-2389.1989.tb01250.x

10.1021/es00117a012

10.1515/9781501509131-009

Dzombak D.A., 1990, Surface complexation modeling: Hydrous ferric oxide

10.1097/00010694-198708000-00008

Fowless A.D., 1977, Selenitometal complexes. 1. Synthesis and characterization of selenito complexes of cobalt(III) and their equilibrium properties in solution, Inorganic Chem, 16, 1271, 10.1021/ic50172a003

10.2136/sssaj1993.03615995005700030013x

10.2136/sssaj1988.03615995005200040010x

10.1080/00103628509367646

Goldberg S., 1997, Metal adsorption by geomedia: Variables, mechanisms, and model applications, 401

10.1021/es00136a010

10.1346/CCMN.1982.0300203

10.1016/0021-9797(87)90078-6

10.1016/0021-9797(88)90039-2

10.1126/science.238.4828.783

Hunter R.J., 1981, Zeta potential in colloid science

Hunter D.B., 1994, In situ measurements of tetraphenylboron degradation kinetics on clay mineral surfaces by IR, Environ. Sci. Technol, 24, 686, 10.1021/es00053a024

Ihnat M., 1989, Occurrence and distribution of selenium

Letey J., 1986, An agricultural dilemma: Drainage water and toxics disposal in the San Joaquin Valley. Div. of Agric. and Natl. Resour

10.1006/jcis.1994.1396

10.1346/CCMN.1997.0450412

McNeal J.M., 1989, Selenium in agriculture and environment, 1

Nakamoto K., 1986, Infrared and Raman spectra of inorganic and coordination compounds

National Research Council, 1983, Selenium in nutrition

10.2136/sssaj1989.03615995005300010013x

10.2136/sssaj1987.03615995005100050012x

10.2136/sssaj1987.03615995005100050013x

10.1071/SR9910049

10.1016/S0065-2113(08)60702-6

Parfitt R.L., 1977, Adsorption on hydrous oxides. IV. Mechanisms of adsorption of various ions on goethite, J. Soil Sci, 228, 297, 10.1111/j.1365-2389.1977.tb02238.x

10.1039/f19777300796

Presser T.S. andBarnes I.Selenium concentration in waters tributary to and in the vicinity of the Kesterson National Wildlife Refuge Fresno and Merced Counties California.Water Resour. Invest. Rep. 84‐4122.U.S. Geol. Surv Sacramento CA.1984

Presser T.S. andBarnes I.Dissolved constituents including selenium in waters in the vicinity of the Kesterson National Wildlife Refuge and the West Grassland Fresno and Merced Counties California.Water Resour. Invest. Rep. 85‐4220.U.S. Geol. Surv. Menlo Park CA.1985

10.2136/sssaj1976.03615995004000010017x

Ross S.D., 1972, Inorganic infrared and Raman spectra

Ross S.D., 1970, Forbidden transition in the infra‐red spectra of tetrahedral anions‐IX: Monodentate selenato complexes, Spectrochim. Acta, 26, 971, 10.1016/0584-8539(70)80294-X

10.1016/0371-1951(64)80096-5

Schwertmann U., 1991, Iron oxides in the laboratory: Preparation and characterization

Sposito G., 1984, The surface chemistry of soils

Stumm W., 1996, Aquatic chemistry: Chemical equilibria and rates in natural waters

10.1021/es00002a005

10.1346/CCMN.1997.0450605

10.2136/sssaj1997.03615995006100010012x

Tan J., 1991, Selenium in geo‐ecosystem and its relation to endemic diseases in China, Water, Air, Soil Pollut, 57, 59, 10.1007/BF00282869

10.1021/la00068a016

10.1021/la00093a015

Van Gee A., 1994, Complexation of carbonate species at the goethite surface: Implications for adsorption of metal ions in natural waters, Geochim. Cosmochim. Acta, 58, 2073, 10.1016/0016-7037(94)90286-0

10.1002/jpln.19871500105

Weighardt V., 1971, Di‐μ‐sulfato‐μ‐hydroxo‐bis[triamminkobalt(III)]‐ und Di‐μ‐selanato‐μ‐hydroxo‐bis[triamminkobalt(III)‐komplexe, Z. Anorg. Allg. Chem, 383, 240, 10.1002/zaac.19713830303

10.1021/es00082a010

10.1016/0016-7061(96)00050-X