Selective transformations of complex molecules are enabled by aptameric protective groups
Tóm tắt
Từ khóa
Tài liệu tham khảo
Koehn, F. E. & Carter, G. T. The evolving role of natural products in drug discovery. Nature 4, 206–220 (2005).
Li, J W-H. & Vederas, J. C. Drug discovery and natural products: end of an era or an endless frontier. Science 325, 161–165 (2009).
Alper, P. B., Hendrix, M., Sears, P. & Wong, C-H. Probing the specificity of aminoglycoside–ribosomal RNA interactions with designed synthetic analogs. J. Am. Chem. Soc. 120, 1965–1978 (1998).
Hanessian, S., Szychowski, J., Campos-Reales Pineda, N. B., Furtos, A. & Keillor, J. W. 6-Hydroxy to 6′′′-amino tethered ring-to-ring macrocyclic aminoglycosides as probes for APH(3′)-IIIa kinase. Bioorg. Med. Chem. Lett. 17, 3221–3225 (2007).
Stoltenburg, R., Reinemann, C. & Strehlitz, B. SELEX-A (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol. Eng. 24, 381–403 (2007).
Gold, L., Polisky, B., Uhlenbeck, O. & Yarus, M. Diveristy of oligonucleotide functions. Annu. Rev. Biochem. 64, 763–797 (1995).
Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).
Wallis, M. G., von Ahsen, U., Schroeder, R. & Famulok, M. A novel RNA motif for neomycin recognition. Chem. Biol. 2, 543–552 (1995).
Famulok, M. & Szostak, J. W. Stereospecific recognition of tryptophan agarose by in vitro selected RNA. J. Am. Chem. Soc. 114, 3990–3991 (1992).
Famulok, M. Molecular recognition of amino acids by RNA-apatmers: an L-citrulline binding RNA motif and its evolution into an L-arginine binder. J. Am. Chem. Soc. 116, 1698–1706 (1994).
Li, Y., Geyer, C. R. & Sen, D. Recognition of anionic porphyrins by DNA aptamers. Biochemistry 35, 6911–6922 (1996).
Wang, K. Y., McCurdy, S., Shea, R. G., Swaminathan, S. & Bolton, P. H. A DNA aptamer which binds to and inhibits thrombin exhibits a new structural motif for DNA. Biochemistry 32, 1899–1904 (1993).
Betat, H. et al. Aptamers that recognize the lipid moiety of the antibiotic moenomycin A. Biol. Chem. 384, 1497–1500 (2005).
Jiang, L. et al. Saccharide-RNA recognition in a complex formed between neomycin B and an RNA aptamer. Structure 7, 817–827 (1999).
Cowan, J. A., Ohyama, T., Wang, D. & Natarajan, K. Recognition of a cognate RNA aptamer by neomycin B: quantitative evaluation of hydrogen bonding and electrostatic interactions. Nucleic Acids Res. 28, 2935–2942 (2000).
Purohit, P. & Stern, S. Interactions of small RNA with antibiotic and RNA ligands of the 30S subunit. Nature 370, 659–662 (1994).
Moazed, D. & Noller, H. F. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327, 389–394 (1987).
Francois, B. et al. Crystal structures of complexes between aminoglycosides and decoding A site oligonucleotides: role of the number of rings and positive charges in the specific binding leading to miscoding. Nucleic Acids Res. 33, 5677–5690 (2005).
Zhou, J., Wang, G., Zhang, L-H. & Ye, X-S. Modifications of aminoglycoside antibiotics targeting RNA. Med. Res. Rev. 27, 279–316 (2007).
Zhang, J. et al. Surprising alteration of antibacterial activity of 5′′-modified neomycin against resistant bacteria. J. Med. Chem. 51, 7563–7573 (2008).
Stampfl, S., Lempradl, A., Koehler, G. & Schroeder, R. Monovalent ion dependence of neomycin B binding to an RNA aptamer characterized by spectroscopic methods. ChemBioChem. 8, 1137–1145 (2007).
Coquière, D., de la Lande, A., Parisel, O., Prangé, T. & Reinaud, O. Directional control and supramolecular protection allowing the chemo- and regioselective transformation of a triamine. Chem. Eur. J. 15, 11912–11917 (2009).
Cafeo, G., Kohnke, F. H. & Valenti, L. Regioselective O-alkylations and acylations of polyphenolic substrates using a calix[4]pyrrole derivative. Tetrahedron Lett. 50, 4138–4140 (2009).