Selective oxofunctionalization of cyclohexane over titanium dioxide–based and bismuth oxyhalide (BiOX, X = Cl−, Br−, I−) photocatalysts by visible light irradiation

Applied Catalysis B: Environmental - Tập 206 - Trang 252-262 - 2017
Adolfo Henríquez1,2, Héctor D. Mansilla2, Azael Martínez Martínez-de la Cruz3, Juanita Freer1,2, David Contreras1,2
1Renewable Resources Laboratory, Biotechnology Center, University of Concepción, University Campus, Concepción, Chile
2Faculty of Chemical Sciences, University of Concepción, University Campus, Concepción, Chile
3Faculty of Mechanic and Electric Engineering, Autonomous University of Nuevo León, University Village, 66451 San Nicolás de los Garza, NL, Mexico

Tài liệu tham khảo

Barrio, 2004, An experimental and theoretical study of the catalytic effect of quaternary ammonium salts on the oxidation of hydrocarbons, Tetrahedron, 60, 11527, 10.1016/j.tet.2004.09.060 Roduner, 2013, Selective catalytic oxidation of C-H bonds with molecular oxygen, Chemcatchem, 5, 82, 10.1002/cctc.201200266 Qadir, 2014, TiO2 nanomaterials: highly active catalysts for the oxidation of hydrocarbons, J. Mol. Catal. A Chem., 383, 225, 10.1016/j.molcata.2013.12.012 Sheldon, 2012 Zhang, 2012, Transforming CdS into an efficient visible light photocatalyst for selective oxidation of saturated primary C-H bonds under ambient conditions, Chem. Sci., 3, 2812, 10.1039/c2sc20603j Retcher, 2008, Unexpected high oxidation of cyclohexane by Fe salts and dihydrogen peroxide in acetonitrile, J. Mol. Catal. A Chem., 286, 1, 10.1016/j.molcata.2008.02.007 Almquist, 2001, The photo-oxidation of cyclohexane on titanium dioxide: an investigation of competitive adsorption and its effects on product formation and selectivity, Appl. Catal. A Gen., 214, 259, 10.1016/S0926-860X(01)00495-1 Shiraishi, 2008, Selective organic transformations on titanium oxide-based photocatalysts, J. Photochem. Photobiol. C Photochem. Rev., 9, 157, 10.1016/j.jphotochemrev.2008.05.001 Hattori, 2012, Efficient and selective photocatalytic cyclohexane oxidation on a layered titanate modified with iron oxide under sunlight and CO2 atmosphere, ACS Catal., 2, 1910, 10.1021/cs300339f Mu, 1989, Room-temperature photocatalytic oxidation of liquid cyclohexane into cyclohexanone over neat and modified TiO2, Catal. Lett., 3, 73, 10.1007/BF00765057 Sclafani, 1996, Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions, J. Phys. Chem., 100, 13655, 10.1021/jp9533584 Boarini, 1998, Photocatalytic oxygenation of cyclohexane on titanium dioxide suspensions: effect of the solvent and of oxygen, Langmuir, 14, 2080, 10.1021/la970384f Robertson, 2005, A comparison of the effectiveness of TiO2 photocatalysis and UVA photolysis for the destruction of three pathogenic micro-organisms, J. Photochem. Photobiol. A Chem., 175, 51, 10.1016/j.jphotochem.2005.04.033 Mills, 1993, Water – purification by semiconductor photocatalysis, Chem. Soc. Rev., 22, 417, 10.1039/cs9932200417 Sannino, 2013, Gas-phase photocatalytic partial oxidation of cyclohexane to cyclohexanol and cyclohexanone on Au/TiO2 photocatalysts, J. Adv. Oxid. Technol., 16, 71 Gonzalez, 1999, Photocatalytic selective oxidation of hydrocarbons in the aqueous phase, J. Catal., 183, 159, 10.1006/jcat.1999.2395 Du, 2006, Selective photo(catalytic)-oxidation of cyclohexane: effect of wavelength and TiO2 structure on product yields, J. Catal., 238, 342, 10.1016/j.jcat.2005.12.011 Brusa, 2007, Photocatalytic air oxidation of cyclohexane in CH2Cl2-C6H12 mixtures over TiO2 particles – an attempt to rationalize the positive effect of dichloromethane on the yields of valuable oxygenates, J. Mol. Catal. A Chem., 268, 29, 10.1016/j.molcata.2006.12.008 Carneiro, 2011, The effect of water on the performance of TiO2 in photocatalytic selective alkane oxidation, J. Catal., 277, 129, 10.1016/j.jcat.2010.10.019 Qamar, 2014, Synthesis and photocatalytic activity of mesoporous nanocrystalline Fe-doped titanium dioxide, Catal. Today, 230, 158, 10.1016/j.cattod.2013.10.040 Asahi, 2001, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293, 269, 10.1126/science.1061051 Khan, 2002, Efficient photochemical water splitting by a chemically modified N-TiO2, Science, 297, 2243, 10.1126/science.1075035 Mitoraj, 2008, The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light, Angew. Chem. Int. Ed., 47, 9975, 10.1002/anie.200800304 Zhao, 2004, Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation, J. Am. Chem. Soc., 126, 4782, 10.1021/ja0396753 Shi, 2012, One template approach to synthesize C-doped titania hollow spheres with high visible-light photocatalytic activity, Chem. Eng. J., 195, 226, 10.1016/j.cej.2012.04.095 Choi, 1994, The role of metal – ion dopants in quantum – sized TiO2 – correlation between photoreactivity and charge – carrier recombination dynamics, J. Phys. Chem., 98, 13669, 10.1021/j100102a038 Kim, 2005, Visible light active platinum-ion-doped TiO2 photocatalyst, J. Phys. Chem. B, 109, 24260, 10.1021/jp055278y Peng, 2010, Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts, Phys. Chem. Chem. Phys., 12, 8033, 10.1039/c002460k Devi, 2010, Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of Aniline Blue under UV/solar light, J. Mol. Catal. A Chem., 328, 44, 10.1016/j.molcata.2010.05.021 Choi, 2010, Effects of single metal-ion doping on the visible-light photoreactivity of TiO2, J. Phys. Chem. C, 114, 783, 10.1021/jp908088x Binas, 2012, Synthesis and photocatalytic activity of Mn-doped TiO2 nanostructured powders under UV and visible light, Appl. Catal. B Environ., 113, 79, 10.1016/j.apcatb.2011.11.021 Fu, 2013, Soft-chemical synthesis of mesoporous nitrogen-modified titania with superior photocatalytic performance under visible light irradiation, Chem. Eng. J., 219, 155, 10.1016/j.cej.2013.01.032 Litter, 1996, Photocatalytic properties of iron-doped titania semiconductors, J. Photochem. Photobiol. A Chem., 98, 171, 10.1016/1010-6030(96)04343-2 Navio, 1996, Synthesis, characterization and photocatalytic properties of iron-doped titania semiconductors prepared from TiO2 and iron(III) acetylacetonate, J. Mol. Catal. A Chem., 106, 267, 10.1016/1381-1169(95)00264-2 Navio, 1999, Iron-doped titania powders prepared by a sol-gel method. Part II: photocatalytic properties, Appl. Catal. A Gen., 178, 191, 10.1016/S0926-860X(98)00286-5 deKrafft, 2012, Metal-organic framework templated synthesis of Fe2O3/TiO2 nanocomposite for hydrogen production, Adv. Mater., 2014, 10.1002/adma.201200330 Martinez-de la Cruz, 2013, Characterization of the visible-light-driven BiVO4 photocatalyst synthesized via a polymer-assisted hydrothermal method, Res. Chem. Intermed., 39, 881, 10.1007/s11164-012-0602-1 Wang, 2015, Moderate valence band of bismuth oxyhalides (BiOXs, X=Cl, Br, I) for the best photocatalytic degradation efficiency of MC-LR, Chem. Eng. J., 259, 410, 10.1016/j.cej.2014.07.103 Zhang, 2013, Visible-light photocatalytic removal of NO in air over BiOX (X=Cl, Br I) single-crystal nanoplates prepared at room temperature, Ind. Eng. Chem. Res., 52, 6740, 10.1021/ie400615f Qin, 2013, Three dimensional BiOX (XCl, Br and I) hierarchical architectures: facile ionic liquid-assisted solvothermal synthesis and photocatalysis towards organic dye degradation, Mater. Lett., 100, 285, 10.1016/j.matlet.2013.03.045 Zalas, 2014, Synthesis of N-doped template-free mesoporous titania for visible light photocatalytic applications, Catal. Today, 230, 91, 10.1016/j.cattod.2013.12.032 Tauc, 1966, Optical properties and electronic structure of amorphous germanium, Phys. Status Solidi (B), 627, 10.1002/pssb.19660150224 Davis, 1970, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors, Philos. Mag., 22, 0903, 10.1080/14786437008221061 Van Slyke, 1918, The determination of carbon dioxide in carbonates, J. Biol. Chem., 36, 351, 10.1016/S0021-9258(18)86402-X Malygin, 2007, Simple chemical method for the determination of carbon dioxide in air, J. Anal. Chem., 62, 16, 10.1134/S1061934807010054 Akhoundzadeh, 2013, Miniaturized and green method for determination of chemical oxygen demand using UV-induced oxidation with hydrogen peroxide and single drop microextraction, Microchim. Acta., 180, 1029, 10.1007/s00604-013-1024-5 Pan, 2015, Facet-Dependent catalytic activity of nanosheet-assembled bismuth oxyiodide microspheres in degradation of bisphenol A, Environ. Sci. Technol., 49, 6240, 10.1021/acs.est.5b00626 He, 2016, Room-temperature synthesis of BiOI with tailorable (001) facets and enhanced photocatalytic activity, J. Colloid Interface Sci., 478, 201, 10.1016/j.jcis.2016.06.012 Li, 2016, Thickness-dependent photocatalytic activity of bismuth oxybromide nanosheets with highly exposed (010) facets, Appl. Catal. B Environ., 182, 431, 10.1016/j.apcatb.2015.09.050 Zhu, 2013, Preparation, characterization and electronic structures of Fe-doped TiO2 nanostructured fibers, Mater. Res. Bull., 48, 2737, 10.1016/j.materresbull.2013.04.002 Condon, 2006, Chapter 1 – an overview of physisorption, 1 Kapustina, 1988, Oxidation of secondary cyclic alcohols by Pb(OAc)4 catalyzed by Cu(II) compounds, Bull. Acad. Sci. USSR Div. of Chem. Sci., 37, 2095, 10.1007/BF00953412 Eberson, 1992, Inverted spin trapping – reaction between the radical cation of alpha-phenyl-N-tert-butylnitrone and ionic and neutral nucleophiles, J. Chem. Soc. Perkin Trans., 2, 1807, 10.1039/P29920001807 Dikalov, 2001, Spin trapping of polyunsaturated fatty acid-derived peroxyl radicals: reassignment to alkoxyl radical adducts, Free Radic. Biol. Med., 30, 187, 10.1016/S0891-5849(00)00456-1 Dikalov, 1999, Reassignment of organic peroxyl radical adducts, Free Radic. Biol. Med., 27, 864, 10.1016/S0891-5849(99)00134-3 Janzen, 1990, Detection of alkyl, alcoxyl, and alkyperoxyl radicals from the thermolysis of azobis(isobutyronitrile) by ESR spin trapping – evidence for double spin adducts from liquid-phase chromatography and mass-spectroscopy, J. Am. Chem. Soc., 112, 8279, 10.1021/ja00179a010 Merritt, 1977, Spin trapping alkylperoxy radicals, and superoxide-alkyl halide reactions, J. Am. Chem. Soc., 99, 3713, 10.1021/ja00453a033 Jones, 2003, EPR spin-trapping evidence for the direct, one-electron reduction of tert-butylhydroperoxide to the tert-butoxyl radical by copper(II): paradigm for a previously overlooked reaction in the initiation of lipid peroxidation, J. Am. Chem. Soc., 125, 6946, 10.1021/ja034416z Conte, 2012, Cyclohexane oxidation using Au/MgO: an investigation of the reaction mechanism, Phys. Chem. Chem. Phys., 14, 16279, 10.1039/c2cp43363j