Selective oxofunctionalization of cyclohexane over titanium dioxide–based and bismuth oxyhalide (BiOX, X = Cl−, Br−, I−) photocatalysts by visible light irradiation
Tài liệu tham khảo
Barrio, 2004, An experimental and theoretical study of the catalytic effect of quaternary ammonium salts on the oxidation of hydrocarbons, Tetrahedron, 60, 11527, 10.1016/j.tet.2004.09.060
Roduner, 2013, Selective catalytic oxidation of C-H bonds with molecular oxygen, Chemcatchem, 5, 82, 10.1002/cctc.201200266
Qadir, 2014, TiO2 nanomaterials: highly active catalysts for the oxidation of hydrocarbons, J. Mol. Catal. A Chem., 383, 225, 10.1016/j.molcata.2013.12.012
Sheldon, 2012
Zhang, 2012, Transforming CdS into an efficient visible light photocatalyst for selective oxidation of saturated primary C-H bonds under ambient conditions, Chem. Sci., 3, 2812, 10.1039/c2sc20603j
Retcher, 2008, Unexpected high oxidation of cyclohexane by Fe salts and dihydrogen peroxide in acetonitrile, J. Mol. Catal. A Chem., 286, 1, 10.1016/j.molcata.2008.02.007
Almquist, 2001, The photo-oxidation of cyclohexane on titanium dioxide: an investigation of competitive adsorption and its effects on product formation and selectivity, Appl. Catal. A Gen., 214, 259, 10.1016/S0926-860X(01)00495-1
Shiraishi, 2008, Selective organic transformations on titanium oxide-based photocatalysts, J. Photochem. Photobiol. C Photochem. Rev., 9, 157, 10.1016/j.jphotochemrev.2008.05.001
Hattori, 2012, Efficient and selective photocatalytic cyclohexane oxidation on a layered titanate modified with iron oxide under sunlight and CO2 atmosphere, ACS Catal., 2, 1910, 10.1021/cs300339f
Mu, 1989, Room-temperature photocatalytic oxidation of liquid cyclohexane into cyclohexanone over neat and modified TiO2, Catal. Lett., 3, 73, 10.1007/BF00765057
Sclafani, 1996, Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions, J. Phys. Chem., 100, 13655, 10.1021/jp9533584
Boarini, 1998, Photocatalytic oxygenation of cyclohexane on titanium dioxide suspensions: effect of the solvent and of oxygen, Langmuir, 14, 2080, 10.1021/la970384f
Robertson, 2005, A comparison of the effectiveness of TiO2 photocatalysis and UVA photolysis for the destruction of three pathogenic micro-organisms, J. Photochem. Photobiol. A Chem., 175, 51, 10.1016/j.jphotochem.2005.04.033
Mills, 1993, Water – purification by semiconductor photocatalysis, Chem. Soc. Rev., 22, 417, 10.1039/cs9932200417
Sannino, 2013, Gas-phase photocatalytic partial oxidation of cyclohexane to cyclohexanol and cyclohexanone on Au/TiO2 photocatalysts, J. Adv. Oxid. Technol., 16, 71
Gonzalez, 1999, Photocatalytic selective oxidation of hydrocarbons in the aqueous phase, J. Catal., 183, 159, 10.1006/jcat.1999.2395
Du, 2006, Selective photo(catalytic)-oxidation of cyclohexane: effect of wavelength and TiO2 structure on product yields, J. Catal., 238, 342, 10.1016/j.jcat.2005.12.011
Brusa, 2007, Photocatalytic air oxidation of cyclohexane in CH2Cl2-C6H12 mixtures over TiO2 particles – an attempt to rationalize the positive effect of dichloromethane on the yields of valuable oxygenates, J. Mol. Catal. A Chem., 268, 29, 10.1016/j.molcata.2006.12.008
Carneiro, 2011, The effect of water on the performance of TiO2 in photocatalytic selective alkane oxidation, J. Catal., 277, 129, 10.1016/j.jcat.2010.10.019
Qamar, 2014, Synthesis and photocatalytic activity of mesoporous nanocrystalline Fe-doped titanium dioxide, Catal. Today, 230, 158, 10.1016/j.cattod.2013.10.040
Asahi, 2001, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293, 269, 10.1126/science.1061051
Khan, 2002, Efficient photochemical water splitting by a chemically modified N-TiO2, Science, 297, 2243, 10.1126/science.1075035
Mitoraj, 2008, The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light, Angew. Chem. Int. Ed., 47, 9975, 10.1002/anie.200800304
Zhao, 2004, Efficient degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation, J. Am. Chem. Soc., 126, 4782, 10.1021/ja0396753
Shi, 2012, One template approach to synthesize C-doped titania hollow spheres with high visible-light photocatalytic activity, Chem. Eng. J., 195, 226, 10.1016/j.cej.2012.04.095
Choi, 1994, The role of metal – ion dopants in quantum – sized TiO2 – correlation between photoreactivity and charge – carrier recombination dynamics, J. Phys. Chem., 98, 13669, 10.1021/j100102a038
Kim, 2005, Visible light active platinum-ion-doped TiO2 photocatalyst, J. Phys. Chem. B, 109, 24260, 10.1021/jp055278y
Peng, 2010, Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts, Phys. Chem. Chem. Phys., 12, 8033, 10.1039/c002460k
Devi, 2010, Enhanced photocatalytic activity of transition metal ions Mn2+, Ni2+ and Zn2+ doped polycrystalline titania for the degradation of Aniline Blue under UV/solar light, J. Mol. Catal. A Chem., 328, 44, 10.1016/j.molcata.2010.05.021
Choi, 2010, Effects of single metal-ion doping on the visible-light photoreactivity of TiO2, J. Phys. Chem. C, 114, 783, 10.1021/jp908088x
Binas, 2012, Synthesis and photocatalytic activity of Mn-doped TiO2 nanostructured powders under UV and visible light, Appl. Catal. B Environ., 113, 79, 10.1016/j.apcatb.2011.11.021
Fu, 2013, Soft-chemical synthesis of mesoporous nitrogen-modified titania with superior photocatalytic performance under visible light irradiation, Chem. Eng. J., 219, 155, 10.1016/j.cej.2013.01.032
Litter, 1996, Photocatalytic properties of iron-doped titania semiconductors, J. Photochem. Photobiol. A Chem., 98, 171, 10.1016/1010-6030(96)04343-2
Navio, 1996, Synthesis, characterization and photocatalytic properties of iron-doped titania semiconductors prepared from TiO2 and iron(III) acetylacetonate, J. Mol. Catal. A Chem., 106, 267, 10.1016/1381-1169(95)00264-2
Navio, 1999, Iron-doped titania powders prepared by a sol-gel method. Part II: photocatalytic properties, Appl. Catal. A Gen., 178, 191, 10.1016/S0926-860X(98)00286-5
deKrafft, 2012, Metal-organic framework templated synthesis of Fe2O3/TiO2 nanocomposite for hydrogen production, Adv. Mater., 2014, 10.1002/adma.201200330
Martinez-de la Cruz, 2013, Characterization of the visible-light-driven BiVO4 photocatalyst synthesized via a polymer-assisted hydrothermal method, Res. Chem. Intermed., 39, 881, 10.1007/s11164-012-0602-1
Wang, 2015, Moderate valence band of bismuth oxyhalides (BiOXs, X=Cl, Br, I) for the best photocatalytic degradation efficiency of MC-LR, Chem. Eng. J., 259, 410, 10.1016/j.cej.2014.07.103
Zhang, 2013, Visible-light photocatalytic removal of NO in air over BiOX (X=Cl, Br I) single-crystal nanoplates prepared at room temperature, Ind. Eng. Chem. Res., 52, 6740, 10.1021/ie400615f
Qin, 2013, Three dimensional BiOX (XCl, Br and I) hierarchical architectures: facile ionic liquid-assisted solvothermal synthesis and photocatalysis towards organic dye degradation, Mater. Lett., 100, 285, 10.1016/j.matlet.2013.03.045
Zalas, 2014, Synthesis of N-doped template-free mesoporous titania for visible light photocatalytic applications, Catal. Today, 230, 91, 10.1016/j.cattod.2013.12.032
Tauc, 1966, Optical properties and electronic structure of amorphous germanium, Phys. Status Solidi (B), 627, 10.1002/pssb.19660150224
Davis, 1970, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors, Philos. Mag., 22, 0903, 10.1080/14786437008221061
Van Slyke, 1918, The determination of carbon dioxide in carbonates, J. Biol. Chem., 36, 351, 10.1016/S0021-9258(18)86402-X
Malygin, 2007, Simple chemical method for the determination of carbon dioxide in air, J. Anal. Chem., 62, 16, 10.1134/S1061934807010054
Akhoundzadeh, 2013, Miniaturized and green method for determination of chemical oxygen demand using UV-induced oxidation with hydrogen peroxide and single drop microextraction, Microchim. Acta., 180, 1029, 10.1007/s00604-013-1024-5
Pan, 2015, Facet-Dependent catalytic activity of nanosheet-assembled bismuth oxyiodide microspheres in degradation of bisphenol A, Environ. Sci. Technol., 49, 6240, 10.1021/acs.est.5b00626
He, 2016, Room-temperature synthesis of BiOI with tailorable (001) facets and enhanced photocatalytic activity, J. Colloid Interface Sci., 478, 201, 10.1016/j.jcis.2016.06.012
Li, 2016, Thickness-dependent photocatalytic activity of bismuth oxybromide nanosheets with highly exposed (010) facets, Appl. Catal. B Environ., 182, 431, 10.1016/j.apcatb.2015.09.050
Zhu, 2013, Preparation, characterization and electronic structures of Fe-doped TiO2 nanostructured fibers, Mater. Res. Bull., 48, 2737, 10.1016/j.materresbull.2013.04.002
Condon, 2006, Chapter 1 – an overview of physisorption, 1
Kapustina, 1988, Oxidation of secondary cyclic alcohols by Pb(OAc)4 catalyzed by Cu(II) compounds, Bull. Acad. Sci. USSR Div. of Chem. Sci., 37, 2095, 10.1007/BF00953412
Eberson, 1992, Inverted spin trapping – reaction between the radical cation of alpha-phenyl-N-tert-butylnitrone and ionic and neutral nucleophiles, J. Chem. Soc. Perkin Trans., 2, 1807, 10.1039/P29920001807
Dikalov, 2001, Spin trapping of polyunsaturated fatty acid-derived peroxyl radicals: reassignment to alkoxyl radical adducts, Free Radic. Biol. Med., 30, 187, 10.1016/S0891-5849(00)00456-1
Dikalov, 1999, Reassignment of organic peroxyl radical adducts, Free Radic. Biol. Med., 27, 864, 10.1016/S0891-5849(99)00134-3
Janzen, 1990, Detection of alkyl, alcoxyl, and alkyperoxyl radicals from the thermolysis of azobis(isobutyronitrile) by ESR spin trapping – evidence for double spin adducts from liquid-phase chromatography and mass-spectroscopy, J. Am. Chem. Soc., 112, 8279, 10.1021/ja00179a010
Merritt, 1977, Spin trapping alkylperoxy radicals, and superoxide-alkyl halide reactions, J. Am. Chem. Soc., 99, 3713, 10.1021/ja00453a033
Jones, 2003, EPR spin-trapping evidence for the direct, one-electron reduction of tert-butylhydroperoxide to the tert-butoxyl radical by copper(II): paradigm for a previously overlooked reaction in the initiation of lipid peroxidation, J. Am. Chem. Soc., 125, 6946, 10.1021/ja034416z
Conte, 2012, Cyclohexane oxidation using Au/MgO: an investigation of the reaction mechanism, Phys. Chem. Chem. Phys., 14, 16279, 10.1039/c2cp43363j