Selective laser melting of titanium alloy with 50 wt% tantalum: Microstructure and mechanical properties

Journal of Alloys and Compounds - Tập 660 - Trang 461-470 - 2016
Swee Leong Sing1,2, Wai Yee Yeong1,2, Florencia Edith Wiria1,3
1SIMTech-NTU Joint Laboratory (3D Additive Manufacturing), Nanyang Technological University, HW3-01-01, 65A Nanyang Drive, Singapore 637333, Singapore
2Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University, HW1-01-05, 2A Nanyang Link, Singapore 637372, Singapore
3Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075, Singapore

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chua, 2014

Liu, 2014, Interfacial characterization of SLM parts in multi-material processing: metallurgical diffusion between 316L stainless steel and C18400 copper alloy, Mater. Charact., 94, 116, 10.1016/j.matchar.2014.05.001

Sing, 2013, 77

Sun, 2013, Mechanical properties of a Ti6Al4V porous structure produced by selective laser melting, Mater. Des., 49, 545, 10.1016/j.matdes.2013.01.038

Thijs, 2013, Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum, Acta Mater., 61, 4657, 10.1016/j.actamat.2013.04.036

Sing, 2015, Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs, J. Orthop. Res.

Kunze, 2015, Texture, anisotropy in microstructure and mechanical properties of IN718LC alloy processed by selective laser melting (SLM), Mater. Sci. Eng. A, 620, 213, 10.1016/j.msea.2014.10.003

Wei, 2015, Selective laser melting of stainless-steel/nano-hydroxyapatite composites for medical applications: microstructure, element distribution, crack and mechanical properties, J. Mater. Process. Technol., 222, 444, 10.1016/j.jmatprotec.2015.02.010

Prashanth, 2015, Production of high strength Al85Nd8Ni5Co2 alloy by selective laser melting, Addit. Manuf., 6, 1, 10.1016/j.addma.2015.01.001

Hu, 2015, Experimental investigation on selective laser melting of bulk net-shape pure magnesium, Mater. Manuf. Process., 30, 1298, 10.1080/10426914.2015.1025963

Yeong, 2013, 65

Dai, 2015, Tailoring surface quality through mass and momentum transfer modeling using a volume of fluid method in selective laser melting of TiC/AlSi10Mg powder, Int. J. Mach. Tools Manuf., 88, 95, 10.1016/j.ijmachtools.2014.09.010

Yuan, 2015, Molten pool behaviour and its physical mechanism during selective laser melting of TiC/AlSi10Mg nanocomposites: simulation and experiments, J. Phys. D Appl. Phys., 48, 10.1088/0022-3727/48/3/035303

Attar, 2015, Comparison of wear properties of commerically pure titanium prepared by selective laser melting and casting processes, Mater. Lett., 142, 38, 10.1016/j.matlet.2014.11.156

Kasperovich, 2015, Improvement of fatigue resistance and ductility of Ti6Al4V processed by selective laser melting, J. Mater. Process. Technol., 220, 202, 10.1016/j.jmatprotec.2015.01.025

Sing, 2015, Interfacial characterization of SLM parts in multi-material processing: intermetallic phase formation between AlSi10Mg and C18400 copper alloy, Mater. Charact., 107, 220, 10.1016/j.matchar.2015.07.007

Tan, 2009, Microstructure and mechanical properties of laser solid formed Ti-6Al-4V from blended elemental powders, Rare Metal Mater. Eng., 38, 574, 10.1016/S1875-5372(10)60028-8

Gu, 2011, Selective laser melting of in-situ TiC/Ti5Si3 composites with novel reinforcement architecture and elevated performance, Surf. Coat. Technol., 205, 3285, 10.1016/j.surfcoat.2010.11.051

Gu, 2010, Microstructure characteristics and formation mechanisms of in situ WC cemented carbide based hardmetals prepared by selective laser melting, Mater. Sci. Eng. A, 527, 7585, 10.1016/j.msea.2010.08.075

Gu, 2012, Selective laser melting of TiC/Ti bulk nanocomposites: influence of nanoscale reinforcement, Scr. Mater., 67, 185, 10.1016/j.scriptamat.2012.04.013

Vrancken, 2014, Microstructure and mechanical properties of a novel β titanium metallic composite by selective laser melting, Acta Mater., 68, 150, 10.1016/j.actamat.2014.01.018

Sallica-Leva, 2013, Microstructure and mechanical behavior of porous Ti-6Al-4V parts obtained by selective laser melting, J. Mech. Behav. Biomed. Mater., 26, 98, 10.1016/j.jmbbm.2013.05.011

Facchini, 2010, Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders, Rapid Prototyp. J., 16, 450, 10.1108/13552541011083371

Murr, 2009, Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications, J. Mech. Behav. Biomed. Mater., 2, 20, 10.1016/j.jmbbm.2008.05.004

Vrancken, 2012, Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties, J. Alloys Compd., 541, 177, 10.1016/j.jallcom.2012.07.022

Thijs, 2010, A study of the microstructural evolution during selective laser melting of Ti-6Al-4V, Acta Mater., 58, 3303, 10.1016/j.actamat.2010.02.004

Chlebus, 2011, Microstructure and mechanical behaviour of Ti-6Al-7Nb alloy produced by selective laser melting, Mater. Charact., 62, 488, 10.1016/j.matchar.2011.03.006

Rotaru, 2013, In vivo behavior of surface modified Ti6Al7Nb alloys used in selective laser melting for custom-made implants. A preliminary study, Romanian J. Morphol. Embryol., 54, 791

Szymczyk, 2013, The ability of S.aureus to form biofilm on the TI-6Al-7Nb scaffolds produced by selective laser melting and subjected to the different types of surface modifications, Acta Bioeng. Biomech., 15, 69

Morita, 2000, Alloying titanium and tantalum by cold crucible levitation melting (CCLM) furnace, Mater. Sci. Eng. A, 280, 208, 10.1016/S0921-5093(99)00668-1

Laheurte, 2010, Mechanical properties of low modulus β titanium alloys designed from the electronic approach, J. Mech. Behav. Biomed. Mater., 3, 565, 10.1016/j.jmbbm.2010.07.001

Máleka, 2012, Microstructure and mechanical properties of Ti-35Nb-6Ta alloy after thermomechanical treatment, Mater. Charact., 66, 75, 10.1016/j.matchar.2012.02.012

Banerjee, 2004, Strengthening mechanisms in Ti-Nb-Zr-Ta and Ti-Mo-Zr-Fe orthopaedic alloys, Biomaterials, 25, 3413, 10.1016/j.biomaterials.2003.10.041

de Souza, 2003, Preparation and characterization of Ti-Ta alloys for application in corrosive media, Mater. Lett., 57, 3010, 10.1016/S0167-577X(02)01422-2

Loh, 2014, Selective laser melting of aluminium alloy using a uniform beam profile, Virtual Phys. Prototyp., 9, 11, 10.1080/17452759.2013.869608

Jhabvala, 2010, On the effect of scanning strategies in the selective laser melting process, Virtual Phys. Prototyp., 5, 99, 10.1080/17452751003688368

Yasa, 2010, Investigation of sectoral scanning in selective laser melting

Doraiswamy, 2003, The effect of grain size and stability on ambient temperature tensile and creep deformation in metastable beta titanium alloys, Acta Mater., 51, 1607, 10.1016/S1359-6454(02)00561-X

Grevey, 2015, Microstructure and micro-electrochemical study of a tantalum-titanium weld interface, Mater. Des., 87, 974, 10.1016/j.matdes.2015.08.074

Kenel, 2015, Influence of cooling rate on microstructure formation during rapid solidification of binary TiAl alloys, J. Alloys Compd., 637, 242, 10.1016/j.jallcom.2015.03.016

Qazi, 2005, Metastable beta titanium alloys for orthopedic applications, Adv. Eng. Mater., 7, 993, 10.1002/adem.200500060

Zhang, 2014, Influence of Ni content on microstructure of W-Ni alloy produced by selective laser melting, Int. J. Refract. Metals Hard Mater., 45, 15, 10.1016/j.ijrmhm.2014.02.007

Zhu, 2014, Characterization of microstructure and mechanical properties of laser melting deposited Ti-6.5Al-3.5Mo-1.5Zr-0.3Si titanium alloy, Mater. Des., 56, 445, 10.1016/j.matdes.2013.11.044

Hussien, 2013, Finite element simulation of the temperature and stress fields in single layers build without-supoort in selective laser melting, Mater. Des., 52, 638, 10.1016/j.matdes.2013.05.070

Loh, 2015, Numerical investigation and an effective modelling on the selective laser melting (SLM) process with aluminium alloy 6061, Int. J. Heat Mass Transf., 80, 288, 10.1016/j.ijheatmasstransfer.2014.09.014

Gu, 2012, Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium, Acta Mater., 60, 3849, 10.1016/j.actamat.2012.04.006

Guo, 2010, Aging response of the Ti-Nb system biomaterials with β-stabilizing elements, Mater. Des., 31, 4842, 10.1016/j.matdes.2010.05.047

Niinomi, 1998, Mechanical properties of biomedical titanium alloys, Mater. Sci. Eng. A, 243, 231, 10.1016/S0921-5093(97)00806-X

Zhou, 2007, Comparison of various properties between titanium-tantalum alloy and pure titanium for biomedical applications, Mater. Trans., 48, 380, 10.2320/matertrans.48.380

Zhou, 2004, Effects of Ta content on Young's modulus and tensile properties of binary Ti-Ta alloys for biomedical applications, Mater. Sci. Eng. A, 371, 283, 10.1016/j.msea.2003.12.011