Khử lưu huỳnh chọn lọc của xăng cracking xúc tác lỏng mô hình trên xúc tác dựa trên polyoxomolybdate Anderson hỗ trợ Al2O3 đã sulf hóa

Reaction Kinetics, Mechanisms and Catalysis - Tập 119 - Trang 615-627 - 2016
D. Ishutenko1, A. Mozhaev1, V. Salnikov1, P. Nikulshin1
1Samara State Technical University , Samara , Russia ,

Tóm tắt

Các xúc tác XMo6/Al2O3 đã được tổng hợp bằng cách sử dụng hợp chất heteropoly XMo6 có cấu trúc Anderson (với X = Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Al). Các xúc tác sulf hóa được đặc trưng bởi sự hấp phụ N2, giảm nhiệt độ lập trình, quang phổ điện tử tia X, và kính hiển vi điện tử truyền qua độ phân giải cao. Các xúc tác đã được thử nghiệm trong quá trình xử lý hydro của xăng FCC mô hình chứa thiophen (1000 ppm lưu huỳnh) và 1-hexene (36 wt%). Các mối tương quan giữa tính chọn lọc HDS/HYDO và các đặc tính của các loài XMoS phụ thuộc vào bản chất của nguyên tố dị thể X trong hợp chất heteropoly XMo6 chỉ ra rằng tác động điện tử chiếm ưu thế dưới ảnh hưởng hình học trong các tính chất xúc tác. Người ta đã phát hiện ra rằng để tạo ra một xúc tác có tính chọn lọc HDS/HYDO cao, việc đạt được pha hoạt động CoMoS hỗn hợp là yêu cầu then chốt.

Từ khóa

#XMo6/Al2O3; polyoxomolybdate; khử lưu huỳnh; xăng FCC; xúc tác sulf hóa.

Tài liệu tham khảo

Brunet S, Mey D, Perot G, Bouchy C, Diehl F (2005) On the hydrodesulfurization of FCC gasoline: a review. Appl Catal A 278:143–172 Sun M, Nicosia D, Prins R (2003) The effect of fluorine, phosphate and chelating agents on hydrotreating catalysts and catalysis. Catal Today 86:173–189 Vissenberg MJ, Joosten LJM, Heffels MMEH, van Welsenes AJ, de Beer VHJ, van Santen RA, van Veen JAR (2000) Tungstate versus molybdate adsorption on oxidic surfaces: a chemical approach. J Phys Chem B 104:8456–8461 Carriera X, Lambert JF, Kuba S, Knozinger H, Che M (2003) Influence of ageing on MoO3 formation in the preparation of alumina-supported Mo catalysts. J Mol Struct 656:231–238 Breysse M, Geantet C, Afanasiev P, Blanchard J, Vrinat M (2008) Recent studies on the preparation, activation and design of active phases and supports of hydrotreating catalysts. Catal Today 130:3–13 Spojakina AA, Gigov B, Shopov DM (1982) Synthesis and properties of hydrodesulfurization catalysts. IV. Thiophene hydrodesulfurization on molybdenum catalysts containing heteropolycompounds. React Kinet Catal Lett 19:11–14 Daudin A, Lamic AF, Perot G, Brunet S, Raybaud P, Bouchy C (2008) Microkinetic interpretation of HDS/HYDO selectivity of the transformation of a model FCC gasoline over transition metal sulfides. Catal Today 130:221–230 Maitra AM, Cant NW, Trimm DL (1989) Novel hydrotreating catalysts prepared from heteropolyanion complexes impregnated on alumina. Appl Catal 48:187–197 Cabello CI, Botto IL, Thomas JH (2000) Anderson type heteropolyoxomolybdates in catalysis: 1. (NH4)3[CoMo6O24H6]7H2O/γ-Al2O3 as alternative of Co–Mo/γ-Al2O3 hydrotreating catalysts. Appl Catal A 197:79–86 Pettiti I, Botto IL, Cabello CI, Colonna S, Faticanti M, Minelli G, Porta P, Thomas HJ (2001) Anderson-type heteropolyoxomolybdates in catalysis 2. EXAFS study on Al2O3-supported Mo, Co and Ni sulfided phases as HDS catalysts. Appl Catal A 220:113–121 Kaluža L, Palcheva R, Spojakina A, Jirátová K, Tyuliev G (2012) Hydrodesulfurization NiMo catalysts supported on Co, Ni and B modified Al2O3 from Anderson heteropolymolybdates. Procedia Eng 42:873–884 Botto IL, Cabello CI, Thomas HJ (1997) (NH4)6[TeMo6O24]·7H2O Anderson phase as precursor of the TeMo5O16 catalytic phase: thermal and spectroscopic studies. Mater Chem Phys 47:37–45 Nikulshin P, Mozhaev A, Lancelot C, Blanchard P, Payen E, Lamonier C (2015) Hydroprocessing catalysts based on transition metal sulfides prepared from Anderson and dimeric Co2Mo10-heteropolyanions. A review. C R Chimie. doi:10.1016/j.crci.2015.10.006 Nikulshin PA, Tomina NN, Pimerzin AA, Stakheev AYu, Mashkovsky IS, Kogan VM (2011) Effect of the second metal of Anderson type heteropolycompounds on hydrogenation and hydrodesulphurization properties of XMo6(S)/Al2O3 and Ni3-XMo6(S)/Al2O3 catalysts. Appl Catal A 393:146–152 Blanchard P, Lamonier C, Griboval A, Payen E (2007) New insight in the preparation of alumina supported hydrotreatment oxidic precursors: a molecular approach. Appl Catal A 322:33–45 Hensen EJM, Kooyman PJ, van der Meer Y, van der Kraan AM, de Beer VHJ, van Veen JAR, van Santen RA (2001) The relation between morphology and hydrotreating activity for supported MoS2 particles. J Catal 199:224–235 Kasztelan S, Toulhoat H, Grimblot J, Bonnelle JP (1984) A geometrical model of the active phase of hydrotreating catalysts. Appl Catal 13:127–159 Nikulshin PA, Ishutenko DI, Mozhaev AV, Maslakov KI, Pimerzin AA (2014) Effects of composition and morphology of active phase of CoMo/Al2O3 catalysts prepared using Co2Mo10-heteropolyacid and chelating agents on their catalytic properties in HDS and HYD reactions. J Catal 312:152–169 Li M, Li H, Jiang F, Chu Y, Nie H (2010) The relation between morphology of (Co)MoS2 phases and selective hydrodesulfurization for CoMo catalysts. Catal Today 149:35–39 La Ginestra A, Giannetta F, Fiorucci P (1968) Ammonium heterohexamolybdates from divalent elements of the first transition series: characteristics and thermal decomposition. Gazz Chim Ital 98:1197–1212 X-ray PDF, nos. 22-0504, 22-0506, 22-0507, 22-0057,04-0604, 04-0226, 04-0610 ASTM (2002) Kazanskii LP, Golubev AM (1979) Chemistry of Mo(VI) and W(VI) compounds. Nauka, Novosibirsk Yurchenko EN (1986) Methods of molecular spectroscopy. In: Mikhailenko AL, Aleshina GI (eds) Chemistry of coordination compounds and catalysts. Nauka, Novosibirsk Griboval A, Blanchard P, Payen E (1998) Alumina supported HDS catalysts prepared by impregnation with new heteropolycompounds. Comparison with catalysts prepared by conventional Co–Mo–P co-impregnation. Catal Today 45:277–283 Scheffer B, Dekker NJJ, Mangnus PJ, Moulijn JA (1990) A temperature-programmed reduction study of sulfide Co-Mo/Al2O3 hydrodesulfurization catalysts. J Catal 121:31–46 McGarvey JB, Kasztelan S (1994) An investigation on the reduction behavior of MoS2/Al2O3 and the subsequent detection of hydrogen on the surface. J Catal 148:149–156 Alstrup I, Chorkendorff I, Candia R, Clausen BS, Topsøe H (1982) A combined X-ray photoelectron and Mössbauer emission spectroscopy study of the state of cobalt in sulfided, supported, and unsupported CoMo catalysts. J Catal 77:397–409 de Jong AM, de Beer VHJ, van Veen JAR, Niemantsverdriet JW (1996) Surface science model of a working cobalt-promoted molybdenum sulfide hydrodesulfurization catalyst: characterization and reactivity. J Phys Chem 100:17722–17724 Kaluza L (2015) Activity of transition metal sulfides supported on Al2O3, TiO2 and ZrO2 in the parallel hydrodesulfurization of 1-benzothiophene and hydrogenation of 1-methyl-cyclohex-1-ene. Reac Kinet Mech Cat 114:781–794 Zacek P, Kaluza L, Karban J, Storch J, Sykora J (2014) The rearrangement of 1-methylcyclohex-1-ene during the hydrodesulfurization of FCC gasoline over supported Co(Ni)Mo/Al2O3 sulfide catalysts: the isolation and identification of branched cyclic C7 olefins. Reac Kinet Mech Cat 112:335–346 Harris S, Chianelli RR (1986) Catalysis by transition-metal sulfides—a theoretical and experimental-study of the relation between the synergic systems and the binary transition-metal sulfides. J Catal 98:17–31