Selective electron beam melting of Ti–48Al–2Nb–2Cr: Microstructure and aluminium loss

Intermetallics - Tập 49 - Trang 29-35 - 2014
Jan Schwerdtfeger1, Carolin Körner2
1ZMP, University of Erlangen-Nuremberg, Dr.-Mack-Str. 81, 90762 Fürth, Germany
2WTM, University of Erlangen-Nuremberg, Martenstr. 5, 91058 Erlangen, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Clemens, 2000, Processing and applications of intermetallic gamma-TiAl-based alloys, Adv Eng Mater, 2, 551, 10.1002/1527-2648(200009)2:9<551::AID-ADEM551>3.0.CO;2-U

Dimiduk, 1999, Gamma titanium aliminde alloys – an assessment within the competition of aerospace structural materials, Mater Sci Eng A, 263, 181, 10.1016/S0921-5093(98)01158-7

Knippscheer, 1999, Intermetallic TiAl(Cr,Mo,Si) alloys for lightweight engine parts – structure, properties, and applications, Adv Eng Mater, 1, 187, 10.1002/(SICI)1527-2648(199912)1:3/4<187::AID-ADEM187>3.0.CO;2-F

Yamaguchi, 2000, High-temperature structural intermetallics, Acta Mater, 48, 307, 10.1016/S1359-6454(99)00301-8

Zollinger, 2007, Influence of oxygen on solidification behaviour of cast TiAl-based alloys, Intermetallics, 15, 1343, 10.1016/j.intermet.2007.04.002

Cormier, 2007, Freeform fabrication of titanium aluminide via electron beam melting using prealloyed and blended powders, Res Lett Mater Sci, 2007, 10.1155/2007/34737

Murr, 2010, Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting, Acta Mater, 58, 1887, 10.1016/j.actamat.2009.11.032

Biamino, 2011, Electron beam melting of Ti–48Al–2Cr–2Nb alloy: microstructure and mechanical properties investigation, Intermetallics, 19, 776, 10.1016/j.intermet.2010.11.017

Cansizoglu, 2008, Applications of structural optimization in direct metal fabrication, Rapid Prototyp J, 14, 114, 10.1108/13552540810862082

Schwerdtfeger, 2011, Design of auxetic structures via mathematical optimization, Adv Mater, 23, 2650, 10.1002/adma.201004090

Schwerdtfeger, 2012, Mechanical characterisation of a periodic auxetic structure produced by SEBM, Phys Status Solidi B Basic Solid State Phys, 249, 1347, 10.1002/pssb.201084211

Murr, 2009, Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V, Mater Charact, 60, 96, 10.1016/j.matchar.2008.07.006

Bontha, 2009, Effects of process variables and size-scale on solidification microstructure in beam-based fabrication of bulky 3D structures, Mater Sci Eng A, 513–514, 311, 10.1016/j.msea.2009.02.019

Kurz, 2001, Columnar to equiaxed transition in solidification processing, Sci Technol Adv Mater, 2, 185, 10.1016/S1468-6996(01)00047-X

Heinl, 2008, Selective electron beam melting of cellular titanium: mechanical properties, Adv Eng Mater, 10, 882, 10.1002/adem.200800137

Heinl, 2007, Cellular titanium by selective electron beam melting, Adv Eng Mater, 9, 360, 10.1002/adem.200700025

Eschey, 2009, Examination of the powder spreading effect in electron beam melting (EBM), 308

Appel, 2011

Schwerdtfeger, 2012, In situ flaw detection by IR-imaging during electron beam melting, Rapid Prototyp J, 18, 259, 10.1108/13552541211231572

Appel, 2000, Recent progress in the development of gamma titanium aluminide alloys, Adv Eng Mater, 2, 699, 10.1002/1527-2648(200011)2:11<699::AID-ADEM699>3.0.CO;2-J

Hu, 2007, On the massive phase transformation regime in TiAl alloys: the alloying effect on massive/lamellar competition, Intermetallics, 15, 6, 10.1016/j.intermet.2006.07.007

Sankaran, 2009, Texture and microstructure evolution during tempering of gamma-massive phase in a TiAl-based alloy, Intermetallics, 17, 1007, 10.1016/j.intermet.2009.05.001