Selective Surface PEGylation of UiO-66 Nanoparticles for Enhanced Stability, Cell Uptake, and pH-Responsive Drug Delivery

Chem - Tập 2 Số 4 - Trang 561-578 - 2017
Isabel Abánades Lázaro1, Salame Haddad2, Sabrina Sacca1, Claudia Orellana‐Tavra2, David Fairen‐Jimenez2, Ross S. Forgan1
1WestCHEM School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, UK
2Adsorption & Advanced Materials Laboratory, Department of Chemical Engineering & Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Castaing, 1990, Cis-platin cytotoxicity in human and rat tubular cell cultures, Toxicol. In Vitro, 4, 396, 10.1016/0887-2333(90)90088-B

Poljaková, 2008, The comparison of cytotoxicity of the anticancer drugs doxorubicin and ellipticine to human neuroblastoma cells, Interdiscip. Toxicol., 1, 186, 10.2478/v10102-010-0036-9

Sun, 2005, Rankings and symptom assessments of side effects from chemotherapy: insights from experienced patients with ovarian cancer, Support. Care Cancer, 13, 219, 10.1007/s00520-004-0710-6

Rocca, 2011, Nanoscale metal–organic frameworks for biomedical imaging and drug delivery, Acc. Chem. Res., 44, 957, 10.1021/ar200028a

Krukiewicz, 2016, Biomaterial-based regional chemotherapy: local anticancer drug delivery to enhance chemotherapy and minimize its side-effects, Mater. Sci. Eng. C Mater. Biol. Appl., 62, 927, 10.1016/j.msec.2016.01.063

Peer, 2007, Nanocarriers as an emerging platform for cancer therapy, Nat. Nano, 2, 751, 10.1038/nnano.2007.387

Dobrovolskaia, 2007, Immunological properties of engineered nanomaterials, Nat. Nano, 2, 469, 10.1038/nnano.2007.223

Qu, 2012, Quantum dots impair macrophagic morphology and the ability of phagocytosis by inhibiting the Rho-associated kinase signaling, Nanoscale, 4, 2239, 10.1039/c2nr30243h

Horcajada, 2010, Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging, Nat. Mater., 9, 172, 10.1038/nmat2608

McKinlay, 2010, BioMOFs: metal–organic frameworks for biological and medical applications, Angew. Chem. Int. Ed., 49, 6260, 10.1002/anie.201000048

Maruyama, 2011, Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects, Adv. Drug Deliv. Rev., 63, 161, 10.1016/j.addr.2010.09.003

Sur, 2014, Remote loading of preencapsulated drugs into stealth liposomes, Proc. Natl. Acad. Sci. USA, 111, 2283, 10.1073/pnas.1324135111

Morabito, 2014, Molecular encapsulation beyond the aperture size limit through dissociative linker exchange in metal–organic framework crystals, J. Am. Chem. Soc., 136, 12540, 10.1021/ja5054779

Canton, 2012, Endocytosis at the nanoscale, Chem. Soc. Rev., 41, 2718, 10.1039/c2cs15309b

Chithrani, 2006, Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells, Nano. Lett., 6, 662, 10.1021/nl052396o

Yuan, 1995, Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size, Cancer Res., 55, 3752

Wu, 2014, Nanomaterial-mediated photothermal cancer treatment: the pivotal role of cellular uptake on photothermal therapeutic efficacy, RSC Adv., 4, 53297, 10.1039/C4RA09447F

Yin Win, 2005, Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs, Biomaterials, 26, 2713, 10.1016/j.biomaterials.2004.07.050

Arora, 2012, Nanotoxicology and in vitro studies: the need of the hour, Toxicol. Appl. Pharmacol., 258, 151, 10.1016/j.taap.2011.11.010

Tamames-Tabar, 2014, Cytotoxicity of nanoscaled metal-organic frameworks, J. Mater. Chem. B, 2, 262, 10.1039/C3TB20832J

Lee, 2009, Metal-organic framework materials as catalysts, Chem. Soc. Rev., 38, 1450, 10.1039/b807080f

Cousin Saint Remi, 2011, Biobutanol separation with the metal–organic framework ZIF-8, ChemSusChem, 4, 1074, 10.1002/cssc.201100261

Horcajada, 2012, Metal–organic frameworks in biomedicine, Chem. Rev., 112, 1232, 10.1021/cr200256v

Bellido, 2015, Heparin-engineered mesoporous iron metal-organic framework nanoparticles: toward stealth drug nanocarriers, Adv. Healthc. Mater., 4, 1246, 10.1002/adhm.201400755

Horcajada, 2014, Extended and functionalized porous iron(iii) tri- or dicarboxylates with MIL-100/101 topologies, Chem. Commun., 50, 6872, 10.1039/c4cc02175d

Huxford, 2010, Metal-organic frameworks as potential drug carriers, Curr. Opin. Chem. Biol., 14, 262, 10.1016/j.cbpa.2009.12.012

Cunha, 2013, Rationale of drug encapsulation and release from biocompatible porous metal–organic frameworks, Chem. Mater., 25, 2767, 10.1021/cm400798p

Liu, 2011, Phosphorescent nanoscale coordination polymers as contrast agents for optical imaging, Angew. Chem. Int. Ed., 50, 3696, 10.1002/anie.201008277

Rowe, 2009, Polymer-modified gadolinium metal-organic framework nanoparticles used as multifunctional nanomedicines for the targeted imaging and treatment of cancer, Biomacromolecules, 10, 983, 10.1021/bm900043e

Zhu, 2014, Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated release, Chem. Commun., 50, 8779, 10.1039/C4CC02570A

Wang, 2016, BODIPY-containing nanoscale metal-organic frameworks for photodynamic therapy, Chem. Commun., 52, 5402, 10.1039/C6CC01048B

Zhao, 2016, Theranostic metal-organic framework core-shell composites for magnetic resonance imaging and drug delivery, Chem. Sci., 7, 5294, 10.1039/C6SC01359G

Miller, 2016, Metal-organic frameworks as biosensors for luminescence-based detection and imaging, Interface Focus, 6, 20160027, 10.1098/rsfs.2016.0027

Yaghi, 2003, Reticular synthesis and the design of new materials, Nature, 423, 705, 10.1038/nature01650

Kitagawa, 2004, Functional porous coordination polymers, Angew. Chem. Int. Ed., 43, 2334, 10.1002/anie.200300610

Iversen, 2011, Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies, Nano Today, 6, 176, 10.1016/j.nantod.2011.02.003

Oh, 2014, Endocytosis and exocytosis of nanoparticles in mammalian cells, Int. J. Nanomedicine, 9, 51

Orellana-Tavra, 2016, Endocytosis mechanism of nano metal-organic frameworks for drug delivery, Adv. Healthc. Mater., 5, 2261, 10.1002/adhm.201600296

Wang, 2009, Postsynthetic modification of metal-organic frameworks, Chem. Soc. Rev., 38, 1315, 10.1039/b802258p

Kim, 2012, Postsynthetic ligand and cation exchange in robust metal–organic frameworks, J. Am. Chem. Soc., 134, 18082, 10.1021/ja3079219

Marshall, 2016, Postsynthetic bromination of UiO-66 analogues: altering linker flexibility and mechanical compliance, Dalton Trans., 45, 4132, 10.1039/C5DT03178H

Ragon, 2015, Acid-functionalized UiO-66(Zr) MOFs and their evolution after intra-framework cross-linking: structural features and sorption properties, J. Mater. Chem. A., 3, 3294, 10.1039/C4TA03992K

Wang, 2015, Surface-specific functionalization of nanoscale metal–organic frameworks, Angew. Chem. Int. Ed., 54, 14738, 10.1002/anie.201506888

Gross, 2013, Reversible ligand exchange in a metal–organic framework (MOF): toward MOF-based dynamic combinatorial chemical systems, J. Phys. Chem. A., 117, 3771, 10.1021/jp401039k

Kondo, 2010, Coordinatively immobilized monolayers on porous coordination polymer crystals, Angew. Chem. Int. Ed., 49, 5327, 10.1002/anie.201001063

McGuire, 2015, The surface chemistry of metal-organic frameworks, Chem. Commun., 51, 5199, 10.1039/C4CC04458D

Zacher, 2011, Surface chemistry of metal–organic frameworks at the liquid–solid interface, Angew. Chem. Int. Ed., 50, 176, 10.1002/anie.201002451

Wuttke, 2015, MOF nanoparticles coated by lipid bilayers and their uptake by cancer cells, Chem. Commun., 51, 15752, 10.1039/C5CC06767G

Férey, 2004, A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction, Angew. Chem. Int. Ed., 43, 6296, 10.1002/anie.200460592

Taylor-Pashow, 2009, Post-synthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery, J. Am. Chem. Soc., 131, 14261, 10.1021/ja906198y

Guo, 2012, Combining coordination modulation with acid–base adjustment for the control over size of metal–organic frameworks, Chem. Mater., 24, 444, 10.1021/cm202593h

Tsuruoka, 2009, Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth, Angew. Chem. Int. Ed., 48, 4739, 10.1002/anie.200901177

Vermoortele, 2013, Synthesis modulation as a tool to increase the catalytic activity of metal–organic frameworks: the unique case of UiO-66(Zr), J. Am. Chem. Soc., 135, 11465, 10.1021/ja405078u

Umemura, 2011, Morphology design of porous coordination polymer crystals by coordination modulation, J. Am. Chem. Soc., 133, 15506, 10.1021/ja204233q

Pham, 2011, Novel route to size-controlled Fe–MIL-88B–NH2 metal–organic framework nanocrystals, Langmuir, 27, 15261, 10.1021/la203570h

Hermes, 2007, Trapping metal-organic framework nanocrystals:  an in-situ time-resolved light scattering study on the crystal growth of MOF-5 in solution, J. Am. Chem. Soc., 129, 5324, 10.1021/ja068835i

Park, 2012, Introduction of functionalized mesopores to metal–organic frameworks via metal–ligand–fragment coassembly, J. Am. Chem. Soc., 134, 20110, 10.1021/ja3085884

Zimpel, 2016, Imparting functionality to MOF nanoparticles by external surface selective covalent attachment of polymers, Chem. Mater., 28, 3318, 10.1021/acs.chemmater.6b00180

Cavka, 2008, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, J. Am. Chem. Soc., 130, 13850, 10.1021/ja8057953

Orellana-Tavra, 2015, Amorphous metal-organic frameworks for drug delivery, Chem. Commun., 51, 13878, 10.1039/C5CC05237H

Liang, 2013, Microwave-assisted solvothermal synthesis of zirconium oxide based metal-organic frameworks, Chem. Commun., 49, 3706, 10.1039/c3cc40368h

Katz, 2013, A facile synthesis of UiO-66, UiO-67 and their derivatives, Chem. Commun., 49, 9449, 10.1039/c3cc46105j

Schaate, 2011, Modulated synthesis of Zr-based metal–organic frameworks: from nano to single crystals, Chem. Eur. J., 17, 6643, 10.1002/chem.201003211

Wu, 2013, Unusual and highly tunable missing-linker defects in zirconium metal–organic framework UiO-66 and their important effects on gas adsorption, J. Am. Chem. Soc., 135, 10525, 10.1021/ja404514r

Trickett, 2015, Definitive molecular level characterization of defects in UiO-66 crystals, Angew. Chem. Int. Ed., 54, 11162, 10.1002/anie.201505461

Goto, 2008, “Clickable” metal-organic framework, J. Am. Chem. Soc., 130, 14354, 10.1021/ja7114053

Shao, 2011, Acid-base jointly promoted copper(I)-catalyzed azide-alkyne cycloaddition, J. Org. Chem., 76, 6832, 10.1021/jo200869a

Barrett, 1951, The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc., 73, 373, 10.1021/ja01145a126

Zahna, 2015, A water-born Zr-based porous coordination polymer: modulated synthesis of Zr-fumarate MOF, Micropor. Mesopor. Mater, 203, 186, 10.1016/j.micromeso.2014.10.034

Hirschle, 2016, Exploration of MOF nanoparticle sizes using various physical characterization methods – is what you measure what you get?, CrystEngComm, 18, 4359, 10.1039/C6CE00198J

Perry, 2012, PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics, Nano Lett., 12, 5304, 10.1021/nl302638g

Gref, 2012, The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres, Adv. Drug Deliv. Rev., 64, 316, 10.1016/j.addr.2012.09.008

Sebby, 2015, Determination of the surface density of polyethylene glycol on gold nanoparticles by use of microscale thermogravimetric analysis, Anal. Bioanal. Chem., 407, 2913, 10.1007/s00216-015-8520-x

Rouquerol, 1999, p 219

deKrafft, 2012, Zr- and Hf-based nanoscale metal–organic frameworks as contrast agents for computed tomography, J. Mater. Chem., 22, 18139, 10.1039/c2jm32299d

Sun, 2012, Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle, Dalton Trans., 41, 6906, 10.1039/c2dt30357d

Bellido, 2014, Understanding the colloidal stability of the mesoporous MIL-100(Fe) nanoparticles in physiological media, Langmuir, 30, 5911, 10.1021/la5012555

Li, 2014, Armored MOFs: enforcing soft microporous MOF nanocrystals with hard mesoporous silica, J. Am. Chem. Soc., 136, 5631, 10.1021/ja409675j

Huang, 2001, On the importance and mechanisms of burst release in matrix-controlled drug delivery systems, J. Control Release, 73, 121, 10.1016/S0168-3659(01)00248-6

Javadi, 2013, Ultrasonic gene and drug delivery using eLiposomes, J. Control Release, 167, 92, 10.1016/j.jconrel.2013.01.009

Deutsch, 1982, Regulation of intracellular pH by human peripheral blood lymphocytes as measured by 19F NMR, Proc. Natl. Acad. Sci. USA, 79, 7944, 10.1073/pnas.79.24.7944

Orellana-Tavra, 2016, Drug delivery and controlled release from biocompatible metal–organic frameworks using mechanical amorphization, J. Mater. Chem. B, 4, 7697, 10.1039/C6TB02025A

Mellman, 1996, Endocytosis and molecular sorting, Annu. Rev. Cell Dev. Biol., 12, 575, 10.1146/annurev.cellbio.12.1.575

Rejman, 2004, Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis, Biochem. J., 377, 159, 10.1042/bj20031253

McMahon, 2011, Molecular mechanism and physiological functions of clathrin-mediated endocytosis, Nat. Rev. Mol. Cell Biol., 12, 517, 10.1038/nrm3151

Mayor, 2007, Pathways of clathrin-independent endocytosis, Nat. Rev. Mol. Cell Biol., 8, 603, 10.1038/nrm2216

Gonzalez-Gaitan, 2003, Endocytosis and signaling: a relationship under development, Cell, 115, 513, 10.1016/S0092-8674(03)00932-2

Shin, 2001, Co-option of endocytic functions of cellular caveolae by pathogens, Immunology, 102, 2, 10.1046/j.1365-2567.2001.01173.x

Tuthill, 2010, Picornaviruses, Curr. Top. Microbiol. Immunol., 343, 43

Vercauteren, 2010, The use of inhibitors to study endocytic pathways of gene carriers: optimization and pitfalls, Mol. Ther., 18, 561, 10.1038/mt.2009.281

Chen, 2011, Cholesterol sequestration by nystatin enhances the uptake and activity of endostatin in endothelium via regulating distinct endocytic pathways, Blood, 117, 6392, 10.1182/blood-2010-12-322867

Hufnagel, 2009, Fluid phase endocytosis contributes to transfection of DNA by PEI-25, Mol. Ther., 17, 1411, 10.1038/mt.2009.121

Sarkar, 2005, Selective inhibition by rottlerin of macropinocytosis in monocyte-derived dendritic cells, Immunology, 116, 513

Park, 2016, Size-controlled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy, J. Am. Chem. Soc., 138, 3518, 10.1021/jacs.6b00007

Lim, 2011, Macropinocytosis: an endocytic pathway for internalising large gulps, Immunol. Cell Biol., 89, 836, 10.1038/icb.2011.20

Michelakis, 2008, Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer, Br. J. Cancer, 99, 989, 10.1038/sj.bjc.6604554

Bonnet, 2007, A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth, Cancer Cell, 11, 37, 10.1016/j.ccr.2006.10.020

Badr, 2014, Dichloroacetate modulates cytokines toward T helper 1 function via induction of the interleukin-12–interferon-γ pathway, Onco Targets Ther., 7, 193

Stacpoole, 2003, Efficacy of dichloroacetate as a lactate-lowering drug, J. Clin. Pharmacol., 43, 683, 10.1177/0091270003254637

Wang, 2016, Nanoscale polymer metal-organic framework hybrids for effective photothermal therapy of colon cancers, Adv. Mater., 28, 9320, 10.1002/adma.201602997

Calik, 2016, From highly crystalline to outer surface-functionalized covalent organic frameworks—a modulation approach, J. Am. Chem. Soc., 138, 1234, 10.1021/jacs.5b10708