Loại bỏ chọn lọc Arsenic từ bụi chứa nhiều Arsenic trong hệ kiềm và mô hình dự đoán sử dụng mạng nơ-ron nhân tạo

Minerals & Metallurgical Processing - Tập 38 - Trang 2133-2144 - 2021
Xiao-dong Lv1, Gang Li1, Yun-tao Xin1, Kang Yan2, Yu Yi3
1College of Materials Science and Engineering, Chongqing University, Chongqing, China
2School of Metallurgical Engineering, Jiangxi University of Science and Technology, Ganzhou, China
3Jiangxi Huagan Nerin Precious Metals Technology Co., Ltd, Yichun, China

Tóm tắt

Nghiên cứu này điều tra việc loại bỏ chọn lọc arsenic từ bụi chứa nồng độ arsenic cao trong các hệ kiềm và ảnh hưởng của các điều kiện rửa khác nhau. Kết quả cho thấy tỷ lệ dung dịch-rắn, nồng độ NaOH và liều lượng lưu huỳnh có ảnh hưởng đáng kể đến quá trình. Hiệu suất rửa của arsenic đạt 99,57%, trong khi đó hiệu suất của chì chỉ đạt 0,03% dưới các điều kiện thích hợp. Đặc biệt, việc bổ sung lưu huỳnh có thể thúc đẩy hiệu quả quá trình hòa tan arsenic và giảm hòa tan chì trong các dung dịch. Một mạng nơ-ron nhân tạo đã được sử dụng để mô hình hóa quá trình rửa. Nó bao gồm một mô hình mạng nơ-ron nhân tạo với phương thức lan truyền ngược có cấu trúc "6–10–2" có thể mô phỏng và dự đoán giá trị với độ chính xác trên 99%. Dựa trên sự khác biệt trong trọng số của các thông số khác nhau trong mô hình mạng nơ-ron, tầm quan trọng tương đối của các thông số liên quan đến hiệu suất rửa arsenic và chì đã được xác định, theo thứ tự là nồng độ NaOH, tỷ lệ dung dịch-rắn, liều lượng lưu huỳnh, nhiệt độ, thời gian và tốc độ khuấy.

Từ khóa

#Arsenic #chì #loại bỏ chọn lọc #hệ kiềm #mô hình mạng nơ-ron nhân tạo

Tài liệu tham khảo

Bowell RJ, Alpers CN, Jamieson HE, Nordstrom DK, Majzlan J (2014) The environmental geochemistry of arsenic -- an overview. Rev Mineral Geochem 79(1):1–16 Nazari AM, Radzinski R, Ghahreman A (2016) Review of arsenic metallurgy: treatment of arsenical minerals and the immobilization of arsenic. Hydrometallurgy 174:258–281 O'day PA (2006) Chemistry and mineralogy of arsenic. Elements 2(2):77–83 Safarzadeh MS, Miller JD (2016) The pyrometallurgy of enargite: a literature update. Int J Min Process 157:103–110 Guo XY, Yi Y, Shi J, Tian QH (2016) Leaching behavior of metals from high-arsenic dust by NaOH–Na2S alkaline leaching. Trans Nonferrous Metals Soc China 26(2):575–580 Isabaev SM, Kuzgibekova KM, Zikanova TA, Zhinova EV (2017) Complex hydrometallurgical processing of lead arsenic-containing dust from copper production. Tsvetnye Metally 8:33–38 Karimov KA, Naboichenko SS (2016) Sulfuric acid leaching of high-arsenic dust from copper smelting. Metallurgist 60(3–4):1–4 Zhao HF, Wen SM, Bai SJ, Chen CY, Feng QC (2013) Experimental study on removal of arsenic from sulfuric-acid residue of high-arsenic. Adv Mater Res 634-638:3363–3367 Vircikova E, Havlik M (1999) Removing as from converter dust by a hydrometallurgical method. Jom-J Min Metals Mater Soc 51(9):20–23. https://doi.org/10.1007/s11837-999-0152-1 Alba SIB (2013) Arsenic inertization through alunite-type phases: application to copper pyrometallurgy. http://diposit.ub.edu/dspace/bitstream/2445/48988/1/ASB_THESIS.pdf Garelick H, Jones H, Dybowska A, Valsami-Jones E (2009) Arsenic pollution sources. Rev Environ Contam Toxicol 197:17–60 Bin HE, Zhaojun Y, Jianbo S, Guibin J (2013) Research progress of heavy metal pollution in China: sources, analytical methods, status, and toxicity. Chin Ence Bull 02:134 Sasaki K, Takatsugi K, Kaneko K, Kozai N, Ohnuki T, Tuovinen OH, Hirajima T (2010) Characterization of secondary arsenic-bearing precipitates formed in the bioleaching of enargite by Acidithiobacillus ferrooxidans. Hydrometallurgy 104(3–4):424–431 Amasa SK (1975) Arsenic pollution at Obuasi goldmine, town, and surrounding countryside. Environ Health Perspect 12:131–135. https://doi.org/10.1289/ehp.7512131 Waalkes B, Tallaamichael P (2008) Inorganic arsenic and human prostate Cancer. Environ Health Perspect 116(2):158–164 Sen PK (2017) Abundant environmental arsenic contamination: some statistical perspectives. Sankhya B 78:1–21 Xue S, Jiang X, Wu C, Hartley W, Qian Z, Luo X, Li W (2020) Microbial driven iron reduction affects arsenic transformation and transportation in soil-rice system. Environ Pollut 260:114010. https://doi.org/10.1016/j.envpol.2020.114010 Dalewski F (1999) Removing arsenic from copper smelter gases. Jom-J Min Metals Mater Soc 51(9):24–26. https://doi.org/10.1007/s11837-999-0153-0 Filippou D, St-Germain P, Grammatikopoulos T (2007) Recovery of metal values from copper—arsenic minerals and other related resources. Min Process Extract Metallurgy Rev 28(4):247–298 Yan K, Liu L, Zhao H, Tian L, Xu Z, Wang R (2021) Study on extraction separation of thioarsenite acid in alkaline solution by CO32--type tri-n-Octylmethyl-ammonium chloride. Frontiers in Chem 8:592837. https://doi.org/10.3389/fchem.2020.592837 Filippou D, Demopoulos GP (1997) Arsenic immobilization by controlled scorodite precipitation. JOM 49(12):52–55 Padilla R, Girón D, Ruiz MC (2005) Leaching of enargite in H2SO4–NaCl–O2 media. Hydrometallurgy 80(4):272–279 Safarzadeh MS, Moats MS, Miller JD (2014) An update to “recent trends in the processing of Enargite concentrates”. Miner Process Extr Metall Rev 35(6):390–422 Ruiz MC, Daroch F, Padilla R (2015) Digestion kinetics of arsenic removal from enargite–tennantite concentrates. Miner Eng 79:47–53 Chen W-T, Tsai L-C, Tsai F-C, Shu C-M (2012) Recovery of gallium and arsenic from gallium arsenide waste in the electronics industry. CLEAN - Soil Air Water 40(5):531–537. https://doi.org/10.1002/clen.201100216 Girgin İ, Obut A, Üçyildiz A (2011) Dissolution behaviour of a Turkish lateritic nickel ore. Miner Eng 24(7):603–609. https://doi.org/10.1016/j.mineng.2010.10.009 Wikedzi A, Awe SA (2016) Selective extraction of antimony and arsenic from decopperization slime using experimental design. J Sustain Metall 3(2):362–374. https://doi.org/10.1007/s40831-016-0101-5 Baláž P, Achimovičová M (2006) Mechano-chemical leaching in hydrometallurgy of complex sulphides. Hydrometallurgy 84(1–2):60–68. https://doi.org/10.1016/j.hydromet.2006.04.006 Delfini M, Ferrini M, Manni A, Massacci P, Piga L (2003) Arsenic leaching by Na2S to decontaminate tailings coming from colemanite processing. Miner Eng 16(1):45–50. https://doi.org/10.1016/S0892-6875(02)00262-5 Reig M, Vecino X, Hermassi M, Valderrama C, Gibert O, Cortina JL (2019) Integration of selectrodialysis and solvent-impregnated resins for Zn(II) and cu(II) recovery from hydrometallurgy effluents containing As(V). Separ Purif Technol 229:115818. https://doi.org/10.1016/j.seppur.2019.115818 Pereira PAL, Dutra AJB, Martins AH (2007) Adsorptive removal of arsenic from river waters using pisolite. Miner Eng 20(1):52–59. https://doi.org/10.1016/j.mineng.2006.04.013 Brückner L, Frank J, Elwert T (2020) Industrial recycling of lithium-ion batteries—a critical review of metallurgical process routes. Metals 10:8. https://doi.org/10.3390/met10081107 Kader ZA, Marshall A, Kennedy J (2021) A review on sustainable recycling technologies for lithium-ion batteries. Emerg Mater 4:725–735. https://doi.org/10.1007/s42247-021-00201-w Muir DM (2011) A review of the selective leaching of gold from oxidised copper–gold ores with ammonia–cyanide and new insights for plant control and operation. Miner Eng 24(6):576–582 Wang K, Cui YQ, Tong X, Dong P, Meng Q (2013) Study on the optimal condition of a copper-bearing gold ore cyanide leaching using orthogonal design. Adv Mater Res 734-737:1006–1009 Zhang Z, Peng J, Srinivasakannan C, Zhang Z, Zhang L, Fernández Y, Menéndez JA (2010) Leaching zinc from spent catalyst: process optimization using response surface methodology. J Hazard Mater 176(1–3):1113–1117 Jain AK, Mao J, Mohiuddin KM (2015) Artificial neural networks: a tutorial. Computer 29(3):31–44 Qing-Cui LI, Deng-Xin LI, Chen QY (2011) Prediction of pre-oxidation efficiency of refractory gold concentrate by ozone in ferric sulfate solution using artificial neural networks. Trans Nonferrous Metals Soc China 21(2):413–422 Chehreh CS, Jorjani E (2009) Artificial neural network prediction of Al2O3 leaching recovery in the Bayer process—Jajarm alumina plant (Iran). Hydrometallurgy 97(1):105–110 Ebrahimzade H, Khayati GR, Schaffie M (2020) PSO-ANN-based prediction of cobalt leaching rate from waste lithium-ion batteries. J Mater Cycles Waste Manag 22(1):228–239. https://doi.org/10.1007/s10163-019-00933-2 Hassoun MH (2002) Fundamentals of artificial neural networks. Proc IEEE 84(6):906 Hudson-Edwards KA, Houghton SL, Osborn A (2004) Extraction and analysis of arsenic in soils and sediments. Trends Analy Chem 23(s 10–11):745–752 Basheer IA, Hajmeer MN (2000) Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods 43(1):3–31 Panda S, Panda G (2020) Performance evaluation of a new BP algorithm for a modified artificial neural network. Neural Process Lett 51(2):1869–1889 Li T, Sun J, Wang L (2020) An intelligent optimization method of motion management system based on BP neural network. Neural Comput Applic 33:707–722 Li Q-C, Li D-X, Chen Q-Y (2011) Prediction of pre-oxidation efficiency of refractory gold concentrate by ozone in ferric sulfate solution using artificial neural networks. Trans Nonferrous Metals Soc China 21(2):413–422. https://doi.org/10.1016/s1003-6326(11)60730-9 Şahin M, Erdem M (2015) Cleaning of high lead-bearing zinc leaching residue by recovery of lead with alkaline leaching. Hydrometallurgy 153:170–178. https://doi.org/10.1016/j.hydromet.2015.03.003 Lewis AE (2010) Review of metal sulphide precipitation. Hydrometallurgy 104(2):222–234 Rickard D (2012) Sulfur chemistry in aqueous solutions. Dev Sedimentol 65:31–83