Selection of superior targeting ligands using PEGylated PLGA nanoparticles for delivery of curcumin in the treatment of triple-negative breast cancer cells

Journal of Drug Delivery Science and Technology - Tập 57 - Trang 101722 - 2020
R.S. Prabhuraj1, Kartik Bomb2, Rohit Srivastava3, Rajdip Bandyopadhyaya2
1Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Powai, Mumbai, India
2Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
3Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, India

Tài liệu tham khảo

McDermott, 2010, Targeting breast cancer stem cells, Mol. Oncol., 4, 404, 10.1016/j.molonc.2010.06.005 Muntimadugu, 2016, CD44 targeted chemotherapy for co-eradication of breast cancer stem cells and cancer cells using polymeric nanoparticles of salinomycin and paclitaxel, Colloids Surf. B Biointerfaces, 143, 532, 10.1016/j.colsurfb.2016.03.075 Pillai, 2015, Curcumin entrapped folic acid conjugated PLGA–PEG nanoparticles exhibit enhanced anticancer activity by site specific delivery, RSC Adv., 5, 25518, 10.1039/C5RA00018A Brannon-Peppas, 2004, Nanoparticle and targeted systems for cancer therapy, Adv. Drug Deliv. Rev., 56, 1649, 10.1016/j.addr.2004.02.014 Jeetah, 2014, Nanopharmaceutics: phytochemical-based controlled or sustained drug-delivery systems for cancer treatment, J. Biomed. Nanotechnol., 10, 1810, 10.1166/jbn.2014.1884 Sahu, 2008, Synthesis of novel biodegradable and self-assembling methoxy poly(ethylene glycol)-palmitate nanocarrier for curcumin delivery to cancer cells, Acta Biomater., 4, 1752, 10.1016/j.actbio.2008.04.021 Mulik, 2009, Development of curcuminoids loaded poly(butyl) cyanoacrylate nanoparticles: physicochemical characterization and stability study, Eur. J. Pharmaceut. Sci., 37, 395, 10.1016/j.ejps.2009.03.009 Wong, 2011, Liposome formulation of co-encapsulated vincristine and quercetin enhanced antitumor activity in a trastuzumab-insensitive breast tumor xenograft model, Nanomed. Nanotechnol. Biol. Med., 7, 834, 10.1016/j.nano.2011.02.001 Li, 2008, Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery, Adv. Drug Deliv. Rev., 60, 1000, 10.1016/j.addr.2008.02.011 Kunwar, 2006, Transport of liposomal and albumin loaded curcumin to living cells: an absorption and fluorescence spectroscopic study, Biochim. Biophys. Acta Gen. Subj., 1760, 1513, 10.1016/j.bbagen.2006.06.012 Shaikh, 2009, Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer, Eur. J. Pharmaceut. Sci., 37, 223, 10.1016/j.ejps.2009.02.019 Tsai, 2011, Curcumin and its nano-formulation: the kinetics of tissue distribution and blood-brain barrier penetration, Int. J. Pharm., 416, 331, 10.1016/j.ijpharm.2011.06.030 Makadia, 2011, Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier, Polymers (Basel), 3, 1377, 10.3390/polym3031377 Owens, 2006, Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles, Int. J. Pharm., 307, 93, 10.1016/j.ijpharm.2005.10.010 Casettari, 2012, PEGylated chitosan derivatives: synthesis, characterizations and pharmaceutical applications, Prog. Polym. Sci., 37, 659, 10.1016/j.progpolymsci.2011.10.001 Khalil, 2013, Pharmacokinetics of curcumin-loaded PLGA and PLGA-PEG blend nanoparticles after oral administration in rats, Colloids Surf. B Biointerfaces, 101, 353, 10.1016/j.colsurfb.2012.06.024 Shureiqi, 2000, Chemoprevention: general perspective, Crit. Rev. Oncol. Hematol., 33, 157, 10.1016/S1040-8428(99)00072-4 Hsu, 2007 Anand, 2007, Bioavailability of curcumin: problems and promises, Mol. Pharm., 4, 807, 10.1021/mp700113r Sharma, 2007, Pharmacokinetics and pharmacodynamics of curcumin, 453 Yallapu, 2010, Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells, J. Colloid Interface Sci., 351, 19, 10.1016/j.jcis.2010.05.022 Moghimi, 2003, Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties, Prog. Lipid Res., 42, 463, 10.1016/S0163-7827(03)00033-X Okassa, 2007, Optimization of iron oxide nanoparticles encapsulation within poly (d, l-lactide-co-glycolide) sub-micron particles, Eur. J. Pharm. Biopharm., 67, 31, 10.1016/j.ejpb.2006.12.020 Khare, 2016, Long-circulatory nanoparticles for gemcitabine delivery: development and investigation of pharmacokinetics and in-vivo anticancer efficacy, Eur. J. Pharmaceut. Sci., 92, 183, 10.1016/j.ejps.2016.07.007 Xie, 2011, PLGA nanoparticles improve the oral bioavailability of curcumin in rats: characterizations and mechanisms, J. Agric. Food Chem., 59, 9280, 10.1021/jf202135j Rachmawati, 2016, Curcumin-loaded PLA nanoparticles: formulation and physical evaluation, Sci. Pharm., 84, 191, 10.3797/scipharm.ISP.2015.10 Wang, 2014, Multifunctional nanoparticles as nanocarrier for vincristine sulfate delivery to overcome tumor multidrug resistance, Mol. Pharm., 11, 885, 10.1021/mp400547u Keskin, 2018, Folic acid functionalized PEG coated magnetic nanoparticles for targeting anti-cancer drug delivery: preparation, characterization and cytotoxicity on Doxorubicin, Zoledronic acid and Paclitaxel resistant MCF-7 breast cancer cell lines, Inorg. Nano-Metal Chem., 48, 150, 10.1080/24701556.2018.1453840 Yang, 2018, Reduction-sensitive CD44 receptor-targeted hyaluronic acid derivative micelles for doxorubicin delivery, Int. J. Nanomed., 13, 4361, 10.2147/IJN.S165359 Piraux, 2015, Transferrin-bearing maghemite nano-constructs for biomedical applications, J. Appl. Phys., 117, 17A336, 10.1063/1.4919258 Sheridan, 2006, CD44+/CD24-breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis, Breast Cancer Res., 8, R59, 10.1186/bcr1610 Huang, 2014, Biodegradable self-assembled nanoparticles of poly (d, l-lactide-co-glycolide)/hyaluronic acid block copolymers for target delivery of docetaxel to breast cancer, Biomaterials, 35, 550, 10.1016/j.biomaterials.2013.09.089 Qhattal, 2011, Characterization of CD44-mediated cancer cell uptake and intracellular distribution of hyaluronan-grafted liposomes, Mol. Pharm., 8, 1233, 10.1021/mp2000428 Jain, 2019, Niclosamide encapsulated polymeric nanocarriers for targeted cancer therapy, RSC Adv., 9, 26572, 10.1039/C9RA03407B Necela, 2015, Folate receptor-α (FOLR1) expression and function in triple negative tumors, PloS One, 10 Shen, 2018, Transferrin receptor 1 in cancer: a new sight for cancer therapy, Am. J. Cancer Res., 8, 916 Wang, 2013 Habashy, 2010, Transferrin receptor (CD71) is a marker of poor prognosis in breast cancer and can predict response to tamoxifen, Breast Canc. Res. Treat., 119, 283, 10.1007/s10549-009-0345-x Alam, 2017, Development and characterization of hyaluronic acid modified PLGA based nanoparticles for improved efficacy of cisplatin in solid tumor, Biomed. Pharmacother., 95, 856, 10.1016/j.biopha.2017.08.108