Selection of Brucella abortus mimetic epitopes for fast diagnostic purposes in cattle

Veterinary Research Communications - Tập 47 Số 2 - Trang 987-997 - 2023
Francisco Abad Santos1, Patrícia Tiemi Fujimura2, Emília Rezende Vaz2, Ana Cristina Honorato de Castro2, Ana G. Brito‐Madurro2, Vivian Alonso-Goulart2, Luciana Machado Bastos2, Belchiolina Beatriz Fonseca2, Anna Monteiro Correia Lima3, Luiz Ricardo Goulart2
1Instituto de Biotecnologia da Universidade Federal de Uberlândia
2Instituto de Biotecnologia da Universidade Federal de Uberlândia, Uberlândia, Brazil
3Faculdade de Medicina Veterinária Universidade Federal de Uberlândia, Uberlândia, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Al Dahouk S, Nöckler K, Scholz HC et al (2006) Immunoproteomic characterization of Brucella abortus 1119-3 preparations used for the serodiagnosis of Brucella infections. J Immunol Methods 309:34–47. https://doi.org/10.1016/j.jim.2005.11.003

Castro ACH, Bezerra ÍRS, Pascon AM et al (2022) Modular label-free Electrochemical Biosensor Loading Nature-Inspired peptide toward the widespread use of COVID-19 antibody tests. ACS Nano 16:14239–14253. https://doi.org/10.1021/acsnano.2c04364

da Silva Ribeiro V, Manhani MN, Cardoso R et al (2010) Selection of high affinity peptide ligands for detection of circulating antibodies in neurocysticercosis. Immunol Lett 129:94–99. https://doi.org/10.1016/j.imlet.2010.01.008

de Castro ACH, Alves LM, Siquieroli ACS et al (2020) Label-free electrochemical immunosensor for detection of oncomarker CA125 in serum. Microchem J 155:104746. https://doi.org/10.1016/j.microc.2020.104746

Enache TA, Oliveira-Brett AM (2013) Peptide methionine sulfoxide reductase A (MsrA): direct electrochemical oxidation on carbon electrodes. Bioelectrochemistry 89:11–18. https://doi.org/10.1016/j.bioelechem.2012.08.004

Garrote BL, Fernandes FCB, Cilli EM, Bueno PR (2019a) Field effect in molecule-gated switches and the role of target-to-receptor size ratio in biosensor sensitivity. Biosens Bioelectron 127:215–220. https://doi.org/10.1016/j.bios.2018.12.018

Garrote BL, Santos A, Bueno PR (2019b) Perspectives on and precautions for the Uses of Electric Spectroscopic methods in label-free Biosensing applications. ACS Sens 4:2216–2227. https://doi.org/10.1021/acssensors.9b01177

Godfroid J, Nielsen K, Saegerman C (2010) Diagnosis of brucellosis in Livestock and Wildlife. Croat Med J 51:296–305. https://doi.org/10.3325/cmj.2010.51.296

Goldbaum FA, Velikovsky CA, Baldi PC et al (1999) The 18-kDa cytoplasmic protein of Brucella species – an antigen useful for diagnosis – is a lumazine synthase. J Med Microbiol 48:833–839. https://doi.org/10.1099/00222615-48-9-833

Hell RCR, Amim P, de Andrade HM et al (2009) Immunodiagnosis of human neurocysticercosis using a synthetic peptide selected by phage-display. Clin Immunol 131:129–138. https://doi.org/10.1016/j.clim.2008.10.012

Huang J, Ru B, Dai P (2011) Bioinformatics Resources and Tools for Phage Display. Molecules 16:694–709. https://doi.org/10.3390/molecules16010694

Khurana SK, Sehrawat A, Tiwari R et al (2021) Bovine brucellosis – a comprehensive review. Vet Q 41:61–88. https://doi.org/10.1080/01652176.2020.1868616

Kurdoglu M, Cetin O, Kurdoglu Z, Akdeniz H (2015) The effect of brucellosis on women’s Health and Reproduction. Int J Women’s Heal Reprod Sci 3:176–183. https://doi.org/10.15296/ijwhr.2015.38

Lai S, Chen Q, Li Z (2021) Human brucellosis: an Ongoing Global Health Challenge. China CDC Wkly 3:120–123. https://doi.org/10.46234/ccdcw2021.031

Leite FL, Paterno LG, Borato CE et al (2005) Study on the adsorption of poly(o-ethoxyaniline) nanostructured films using atomic force microscopy. Polym (Guildf) 46:12503–12510. https://doi.org/10.1016/j.polymer.2005.07.108

Lokamar PN, Kutwah MA, Atieli H et al (2020) Socio-economic impacts of brucellosis on livestock production and reproduction performance in Koibatek and Marigat regions, Baringo County, Kenya. BMC Vet Res 16:61. https://doi.org/10.1186/s12917-020-02283-w

López-Santiago R, Sánchez-Argáez AB, De Alba-Núñez LG et al (2019) Immune Response to Mucosal Brucella infection. Front Immunol 10. https://doi.org/10.3389/fimmu.2019.01759

Oliveira MRML, Vieira SN, Alves HC, França EG, Franco DL LFF (2010) Electrochemical and morphological studies of an electroactive material derived from 3-hydroxyphenylacetic acid: a new matrix for oligonucleotide hybridization. J Mater Sci 45:475

OIE WO for AH (2021) Brucellosis (infection with Brucella abortus, B. melitensis and B. suis). 2018. (Chap. 3.1.4.). In: Man. Diagnostic Tests Vaccines Terr. Anim. https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/A_summry.htm

Rodovalho VR, Araujo GR, Vaz ER et al (2018) Peptide-based electrochemical biosensor for juvenile idiopathic arthritis detection. Biosens Bioelectron 100:577–582. https://doi.org/10.1016/j.bios.2017.10.012

Tabatabai LB, Hennager SG (1994) Cattle serologically positive for Brucella abortus have antibodies to B. abortus Cu-Zn superoxide dismutase. Clin Diagn Lab Immunol 1:506–510. https://doi.org/10.1128/cdli.1.5.506-510.1994

Tsai W, Wen S (2006) Determination of uric acid in serum by a mediated amperometric Biosensor. Anal Lett 39:891–901. https://doi.org/10.1080/00032710600605790

TSOGTBAATAR G, TACHIBANA M, WATANABE K et al (2008) Enzyme-linked immunosorbent assay for screening of Canine Brucellosis using recombinant Cu-Zn superoxide dismutase. J Vet Med Sci 70:1387–1389. https://doi.org/10.1292/jvms.70.1387

Velikovsky CA, Cassataro J, Giambartolomei GH et al (2002) A DNA vaccine Encoding Lumazine synthase from Brucella abortus induces protective immunity in BALB/c mice. Infect Immun 70:2507–2511. https://doi.org/10.1128/IAI.70.5.2507-2511.2002

Velikovsky CA, Goldbaum FA, Cassataro J et al (2003) Brucella Lumazine synthase elicits a mixed Th1-Th2 Immune Response and reduces infection in mice challenged with Brucella abortus 544 independently of the adjuvant formulation used. Infect Immun 71:5750–5755. https://doi.org/10.1128/IAI.71.10.5750-5755.2003