Selecting an appropriate machine-learning model for perovskite solar cell datasets

Mahmoud Salah1, Zahraa Ismail1, Sameh O. Abdellatif1
1Electrical Engineering Department, Faculty of Engineering and FabLab in the Center for Emerging Learning Technology (CELT), The British University in Egypt (BUE), El-Sherouk, Egypt

Tóm tắt

AbstractUtilizing artificial intelligent based algorithms in solving engineering problems is widely spread nowadays. Herein, this study provides a comprehensive and insightful analysis of the application of machine learning (ML) models to complex datasets in the field of solar cell power conversion efficiency (PCE). Mainly, perovskite solar cells generate three datasets, varying dataset size and complexity. Various popular regression models and hyperparameter tuning techniques are studied to guide researchers and practitioners looking to leverage machine learning methods for their data-driven projects. Specifically, four ML models were investigated; random forest (RF), gradient boosting (GBR), K-nearest neighbors (KNN), and linear regression (LR), while monitoring the ML model accuracy, complexity, computational cost, and time as evaluating parameters. Inputs' importance and contribution were examined for the three datasets, recording a dominating effect for the electron transport layer's (ETL) doping as the main controlling parameter in tuning the cell's overall PCE. For the first dataset, ETL doping recorded 93.6%, as the main contributor to the cell PCE, reducing to 79.0% in the third dataset.

Từ khóa


Tài liệu tham khảo

Yang, R.X., Tan, L.Z.: Understanding size dependence of phase stability and band gap in CsPbI3 perovskite nanocrystals. J. Chem. Phys. 152(3), 034702 (2020)

Zhang, H., Ji, X., Yao, H., Fan, Q., Yu, B., Li, J.: Review on efficiency improvement effort of perovskite solar cell. Sol. Energy 233, 421–434 (2022)

Mujahid, M., et al.: Progress of high‐throughput and low‐cost flexible perovskite solar cells. Solar RRL 4(8), 1900556 (2020)

Mahran, A.M., Abdellatif, S.O.: Optoelectronic modelling and analysis of transparency against efficiency in perovskites/dye-based solar cells. In: 2021 International Conference on Microelectronics (ICM), pp. 178–181. IEEE (2021)

Yu, P., Zhang, W., Ren, F., Wang, J., Wang, H., Chen, R., Zhang, S., Zhang, Y., Liu, Z., Chen, W.: Strategies for highly efficient and stable cesium lead iodide perovskite photovoltaics: mechanisms and processes. J. Mater. Chem. C 10(13), 4999–5023 (2022)

Sharma, R., Sharma, A., Agarwal, S., Dhaka, M.: Stability and efficiency issues, solutions and advancements in perovskite solar cells: a review. Sol. Energy 244, 516–535 (2022)

Aydin, E., Troughton, J., De Bastiani, M., Ugur, E., Sajjad, M., Alzahrani, A., Neophytou, M., Schwingenschlogl, U., Laquai, F., Baran, D.: Room-temperature-sputtered nanocrystalline nickel oxide as hole transport layer for p–i–n perovskite solar cells. ACS Appl. Energy Mater. 1(11), 6227–6233 (2018)

Ma, S., Yuan, G., Zhang, Y., Yang, N., Li, Y., Chen, Q.: Development of encapsulation strategies towards the commercialization of perovskite solar cells. Energy Environ. Sci. 15(1), 13–55 (2022)

Blancon, J.-C., Even, J., Stoumpos, C., Kanatzidis, M., Mohite, A.D.: Semiconductor physics of organic–inorganic 2D halide perovskites. Nat. Nanotechnol. 15(12), 969–985 (2020)

Abdellatif, S.O., et al.: Experimental studies for glass light transmission degradation in solar cells due to dust accumulation using effective optical scattering parameters and machine learning algorithm. IEEE J. Photovolt. 13(1), 158–164 (2022)

Al-Sabana, O., Abdellatif, S.O.: Optoelectronic devices informatics: optimizing DSSC performance using random-forest machine learning algorithm. Optoelectron. Lett. 18(3), 148–151 (2022)

Yılmaz, B., Yıldırım, R.: Critical review of machine learning applications in perovskite solar research. Nano Energy 80, 105546 (2021)

Parikh, N., Karamta, M., Yadav, N., Tavakoli, M.M., Prochowicz, D., Akin, S., Kalam, A., Satapathi, S., Yadav, P.: Is machine learning redefining the perovskite solar cells? J. Energy Chem. 66, 74–90 (2022)

Odabaşı, Ç., Yıldırım, R.: Machine learning analysis on stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 205, 110284 (2020)

Odabaşı, Ç., Yıldırım, R.: Performance analysis of perovskite solar cells in 2013–2018 using machine-learning tools. Nano Energy 56, 770–791 (2019)

Liu, Z., Rolston, N., Flick, A.C., Colburn, T.W., Ren, Z., Dauskardt, R.H., Buonassisi, T.: Machine learning with knowledge constraints for process optimization of open-air perovskite solar cell manufacturing. Joule 6(4), 834–849 (2022)

Li, J., Pradhan, B., Gaur, S., Thomas, J.: Predictions and strategies learned from machine learning to develop high-performing perovskite solar cells. Adv. Energy Mater. 9(46), 1901891 (2019)

Hu, Y., Hu, X., Zhang, L., Zheng, T., You, J., Jia, B., Ma, Y., Du, X., Zhang, L., Wang, J.: Machine-learning modeling for ultra-stable high-efficiency perovskite solar cells. Adv. Energy Mater. 12(41), 2201463 (2022)

Guo, Z., Lin, B.: Machine learning stability and band gap of lead-free halide double perovskite materials for perovskite solar cells. Sol. Energy 228, 689–699 (2021)

Mahesh, B.: Machine learning algorithms—a review. Int. J. Sci. Res. (IJSR) 9, 381–386 (2020)

Singh, A., Thakur, N., Sharma, A.: A review of supervised machine learning algorithms. In: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), pp. 1310–1315. IEEE (2016)

Alloghani, M., et al.: A systematic review on supervised and unsupervised machine learning algorithms for data science. In: Supervised and Unsupervised Learning for Data Science, pp. 3–21 (2020)

Triantafyllidis, A.K., Tsanas, A.: Applications of machine learning in real-life digital health interventions: review of the literature. J. Med. Internet Res. 21(4), e12286 (2019)

Al-Saban, O., Abdellatif, S.O.: Optoelectronic materials informatics: utilizing random-forest machine learning in optimizing the harvesting capabilities of mesostructured-based solar cells. In: 2021 International Telecommunications Conference (ITC-Egypt), pp. 1–4. IEEE (2021)

Yan, W., Liu, Y., Zang, Y., Cheng, J., Wang, Y., Chu, L., Tan, X., Liu, L., Zhou, P., Li, W., Zhong, Z.: Machine learning enabled development of unexplored perovskite solar cells with high efficiency. Nano Energy 99, 107394 (2022)

Lu, Y., Wei, D., Liu, W., Meng, J., Huo, X., Zhang, Y., Liang, Z., Qiao, B., Zhao, S., Song, D.: Predicting the device performance of the perovskite solar cells from the experimental parameters through machine learning of existing experimental results. J. Energy Chem. 77, 200–208 (2023)

Liu, Y., Yan, W., Han, S., Zhu, H., Tu, Y., Guan, L., Tan, X.: How machine learning predicts and explains the performance of perovskite solar cells. Solar RRL 6(6), 2101100 (2022)

Karhunen, J., Raiko, T., Cho, K.: Unsupervised deep learning: a short review. In: Advances in Independent Component Analysis and Learning Machines, pp. 125–142 (2015)

Ebrahim, M.A., Ebrahim, G.A., Mohamed, H.K., Abdellatif, S.O.: A deep learning approach for task offloading in multi-UAV aided mobile edge computing. IEEE Access 10, 101716–101731 (2022)

Abdellatif, S.O., Josten, S., Khalil, A.S., Erni, D., Marlow, F.: Transparency and diffused light efficiency of dye-sensitized solar cells: tuning and a new figure of merit. IEEE J. Photovolt. 10(2), 522–530 (2020)

Hassan, M.M., Sahbel, A., Abdellatif, S.O., Kirah, K.A., Ghali, H.A.: Toward low-cost, stable, and uniform high-power LED array for solar cells characterization. In: New Concepts in Solar and Thermal Radiation Conversion III, vol. 11496, pp. 60–65. SPIE, ISO 690 (2020)

Eid, A.A., Ismail, Z.S., Abdellatif, S.O.: Optimizing SCAPS model for perovskite solar cell equivalent circuit with utilizing Matlab-based parasitic resistance estimator algorithm. In: 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), pp. 503–507. IEEE (2020)

Hatem, T., Ismail, Z., Elmahgary, M.G., Ghannam, R., Ahmed, M.A., Abdellatif, S.O.: Optimization of organic meso-superstructured solar cells for underwater IoT 2 self-powered sensors. IEEE Trans. Electron Devices 68(10), 5319–5321 (2021)

Abdellatif, S., Sharifi, P., Kirah, K., Ghannam, R., Khalil, A.S.G., Erni, D., Marlow, F.: Refractive index and scattering of porous TiO2 films. Microporous Mesoporous Mater. 264, 84–91 (2018)

Abdellatif, S.O., Fathi, A., Abdullah, K., Hassan, M.M., Khalifa, Z.: Investigating the variation in the optical properties of TiO2 thin-film utilized in bifacial solar cells using machine learning algorithm. J. Photon. Energy 12(2), 022202 (2022)

Hassan, M.M., Ismail, Z.S., Hashem, E.M., Ghannam, R., Abdellatif, S.O.: Investigating the tradeoff between transparency and efficiency in semitransparent bifacial mesosuperstructured solar cells for millimeter-scale applications. IEEE J. Photovolt. 11(5), 1222–1235 (2021)

Mahran, A.M., Abdellatif, S.O.: Investigating the performance of mesostructured based solar cells under indoor artificial lighting. In: 2021 International Telecommunications Conference (ITC-Egypt), pp. 1–5. IEEE (2021)

Hassan, M.M., Iskander, N.N., Abdellatif, S.O., Kirah, K.A., Ghali, H.A.: Investigating the parasitic resistance of mesoporous-based solar cells with respect to thin-film and conventional solar cells. In: Organic, Hybrid, and Perovskite Photovoltaics XXI, International Society for Optics and Photonics, p. 1147424 (2020)

Ismail, Z.S., Sawires, E., Amer, F.Z., Abdellatif, S.O.: Investigating the capacitive properties of all-inorganic lead halides perovskite solar cells using energy band diagrams. In: 2022 IEEE International Conference on Semiconductor Electronics (ICSE), pp. 45–48. IEEE (2022)

Isabona, J., Imoize, A.L., Kim, Y.: Machine learning-based boosted regression ensemble combined with hyperparameter tuning for optimal adaptive learning. Sensors 22(10), 3776 (2022)

Pedregosa, F.: Hyperparameter optimization with approximate gradient. In: International Conference on Machine Learning, pp. 737–746. PMLR (2016)

Kaneko, H., Funatsu, K.: Fast optimization of hyperparameters for support vector regression models with highly predictive ability. Chemom. Intell. Lab. Syst. 142, 64–69 (2015)

Liu, Y., Wang, Y., Zhang, J.: New machine learning algorithm: random forest. In: Information Computing and Applications: Third International Conference, ICICA 2012, Chengde, China, September 14–16, 2012. Proceedings 3, pp. 246–252. Springer (2012)

Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., Chica-Rivas, M.: Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol. Rev. 71, 804–818 (2015)

Konstantinov, A.V., Utkin, L.V.: Interpretable machine learning with an ensemble of gradient boosting machines. Knowl.-Based Syst. 222, 106993 (2021)

Sun, S., Huang, R.: An adaptive K-nearest neighbor algorithm. In: 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery, pp. 91–94. IEEE (2010)

Seber, G.A., Lee, A.J.: Linear Regression Analysis. Wiley, New York (2003)

Khan, F.A., Stoyanovich, J.: The unbearable weight of massive privilege: revisiting bias-variance trade-offs in the context of fair prediction. arXiv preprint http://arxiv.org/abs/2302.08704 (2023)

Liashchynskyi, P., Liashchynskyi, P.: Grid search, random search, genetic algorithm: a big comparison for NAS. arXiv preprint http://arxiv.org/abs/1912.06059 (2019)