Seismic response control of a building by negative stiffness devices

Gisha Mary Mathew1, R. S. Jangid1
1Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Attary, N., Symans, M., Nagarajaiah, S., Reinhorn, A. M., Constantinou, M. C., Sarlis, A. A., et al. (2015). Numerical simulations of a highway bridge structure employing passive negative stiffness device for seismic protection. Earthquake Engineering and Structural Dynamics, 44(6), 973–995.

Attary, N., Symans, M. D., Nagarajaiah, S., Reinhorn, A. M., Constantinou, M. C., Taylor, D., & Sarlis, A. A. (2012). Performance evaluation of a seismically isolated bridge structure with adaptive passive negative stiffness. In Proceedings of Fifteenth World Conference on Earthquake Engineering (15WCEE).

Attary, N., Symans, M. D., Nagarajaiah, S., Reinhorn, A. M., Constantinou, M. C., Taylor, D., Sarlis, A. A., & Pasala, D. T. R. (2012). Application of negative stiffness devices for seismic protection of bridge structures. In Proceedings of 2012 ASCE Structures Congress.

Bakre, S. V., & Jangid, R. S. (2004). Optimum multiple tuned mass dampers for base-excited damped main system. International Journal of Structural Stability and Dynamics, 4(4), 527–542.

Bhatti, A. Q., & Varum. H. (2012). Comparison between the visco-elastic dampers and magnetorheological dampers and study the effect of temperature on the damping properties. In Proceedings of 15th WCEE, World Conference on Earthquake Engineering.

Carrella, A., Brennan, M. J., & Waters, T. P. (2007). Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. Journal of Sound and Vibration, 301(3), 678–689.

Carrella, A., Brennan, M. J., Waters, T. P., & Shin, K. (2008). On the design of a high-static–low-dynamic stiffness isolator using linear mechanical springs and magnets. Journal of Sound and Vibration, 315(3), 712–720.

Fu, Y., & Cherry, S. (2000). Performance comparison of different friction damped systems. In Proceedings of 15th WCEE, World Conference on Earthquake Engineering: Vol 5. (pp. 1–8).

Iemura, H., Igarashi, A., & Kalantari, A. (2004). Enhancing dynamic performance of liquid storage tanks by semi-active controlled dampers. In Proceedings of the 13th World Conference on Earthquake Engineering. Vancouver, BC, Canada.

Iemura, H., Igarashi, A., & Nakata, N. (2001). Semi-active control of full-scale structures using variable joint damper system. In The 14th KKNN Symposium on Civil Engineering (pp. 41–46). Kyoto, Japan.

Iemura, H., Igarashi, A., Toyooka, A., Kouchiyama, O., & Higuchi, M. (2008). Seismic response control with innovative negative stiffness dampers. In Proceedings of the 14th World Conference on Structural Control and Monitoring, Beijing, China.

Iemura, H., & Pradono, M. H. (2002). Passive and semi-active seismic response control of a cable-stayed bridge. Journal of Structural Control, 9(3), 189–204.

Iemura, H., & Pradono, M. H. (2003). Application of pseudo-negative stiffness control to the benchmark cable-stayed bridge. Journal of Structural Control, 10(3), 187–203.

Madhekar, S. N., & Jangid, R. S. (2012). Use of pseudo-negative stiffness dampers for reducing the seismic response of bridges: a benchmark study. Bulletin of Earthquake Engineering, 10(5), 1561–1583.

Mathew, G. M., Qureshi, A., & Jangid, R. S. (2015). Optimal placement of negative stiffness damping system, conference on smart materials. In Adaptive Structures and Intelligent Systems, American Society of Mechanical Engineers, Colorado, USA.

Nagarajaiah, S., Reinhorn, A. M., Constantinou, M. C., Taylor, D., Pasala, D. T. R., & Sarlis, A. A. (2010). Adaptive negative stiffness: a new structural modification approach for seismic protection. In Proceedings of Fifth World Conference on Earthquake Engineering (5WCEE).

Pasala, D. T. R. (2013). Seismic response control of structures using novel adaptive passive and semi-active variable stiffness and negative stiffness devices. Doctoral dissertation, Rice University.

Pasala, D. T. R., Sarlis, A. A., Reinhorn, A. M., Nagarajaiah, S., Constantinou, M. C., & Taylor, D. (2013). Simulated bilinear-elastic behavior in a SDOF elastic structure using negative stiffness device: Experimental and analytical study. Journal of Structural Engineering, 140(2), 1943–1954.

Platus, D. L. (1992). Negative-stiffness-mechanism vibration isolation systems. In Proceedings of Vibration Control in Microelectronics, Optics, and Metrology: vol 1619. (pp. 44–54) San Jose.

Reigles, D. G., & Symans, M. D. (2005). Systematic performance evaluation of smart seismic isolation systems. Structures Congress: Metropolis and Beyond, 1–12.

Reinhorn, A. M., Viti, S., & Cimellaro, G. (2005). Retrofit of structures: Strength reduction with damping enhancement. In Proceedings of the 37th UJNR panel meeting on wind and seismic effects (pp. 16-21). Tsukuba.

Sarlis, A. A. (2013). Adaptive seismic protection systems (Ph. D. Thesis). University at Buffalo, SUNY, Buffalo, NY.

Sarlis, A. A., Pasala, D. T. R., Constantinou, M. C., Reinhorn, A. M., Nagarajaiah, S., & Taylor, D. P. (2012). Negative stiffness device for seismic protection of structures. Journal of Structural Engineering, 139(7), 1124–1133.

Shi, X., Zhu, S., & Nagarajaiah, S. (2017a). Performance comparison between passive negative-stiffness dampers and active control in cable vibration mitigation. Journal of Bridge Engineering, 22(9), 04017054.

Shi, X., Zhu, S., & Spencer, B. F., Jr. (2017b). Experimental study on passive negative stiffness damper for cable vibration mitigation. Journal of Engineering Mechanics, 143(9), 04017070.

Taylor, D. P. (1996). Fluid dampers for applications of seismic energy dissipation and seismic isolation. In Proceedings of 11th world conference on earthquake engineering, 798.

Wu, B., Shi, P., & Ou, J. (2013). Seismic performance of structures incorporating magnetorheological dampers with pseudo-negative stiffness. Structural Control and Health Monitoring, 20(3), 405–421.

Zhang, R. H., & Soong, T. T. (1992). Seismic design of viscoelastic dampers for structural applications. Journal of Structural Engineering, 118(5), 1375–1392.