Seismic faults of the 2022 <italic>M</italic>w 6.6 Menyuan, Qinghaiearthquake and their implication for the regionalseismogenic structures

Kexue Tongbao/Chinese Science Bulletin - Tập 68 Số 2-3 - Trang 254-270 - 2023
Wanpeng Feng, Xiaohui He, Yipeng Zhang, Lihua Fang, Samsonov Sergey, Peizhen Zhang

Tóm tắt

Từ khóa


Tài liệu tham khảo

Fan L, Li B, Liao S, et al. Precise earthquake sequence relocation of the January 8, 2022, Qinghai Menyuan Ms 6.9 earthquake. Earthq Sci, 2022, 35: 138–145.

Yang H, Wang D, Guo R, et al. Rapid report of the 8 January 2022 Ms 6.9 Menyuan earthquake, Qinghai, China. Earthq Res Adv, 2022, 2: 100113.

Li Z H, Han B Q, Liu Z J, et al. Source parameters and slip distributions of the 2016 and 2022 Menyuan, Qinghai earthquakes constrained by InSAR observations (in Chinese). Geomat Inf Sci Wuhan Univ, 2022, 47: 887–897 [李振洪, 韩炳权, 刘振江, 等. InSAR数据约束下的2016年和2022年青海门源地震震源参数及其滑动分布. 武汉大学学报(信息科学版), 2022, 47: 887–897].

Xu Y C, Guo X Y, Feng L L. Relocation and focal mechanism solutions of the Ms 6.9 Menyuan earthquake sequence on January 8, 2022 in Qinghai Province (in Chinese). Acta Seismol Sin, 2022, 44: 1–16 [许英才, 郭祥云, 冯丽丽. 2022年1月8日青海门源Ms 6.9地震序列重定位和震源机制研究. 地震学报, 2022, 44: 1–16].

He X, Zhang Y, Shen X, et al. Examination of the repeatability of two Ms 6.4 Menyuan earthquakes in Qilian-Haiyuan fault zone (NE Tibetan Plateau) based on source parameters. Phys Earth Planet Inter, 2020, 299: 106408.

Fang X, Zhang W, Meng Q. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth Planet Sci Lett, 2007, 258: 293-306.

Yuan D Y, Ge W P, Chen Z W. The growth of northeastern Tibet and its relevance to large‐scale continental geodynamics: A review of recent studies. Tectonics, 2013, 32: 1358-1370.

Meyer B, Tapponnier P, Bourjot L. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet Plateau. Geophys J Int, 1998, 135: 1-47.

Zhang P Z, Burchfiel B C, Molnar P. Late Cenozoic tectonic evolution of the Ningxia-Hui Autonomous Region, China. Geol Soc Am Bull, 1990, 102: 1484-1498.

Zheng W, Zhang P, He W. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan Plateau: Evidence from decadal GPS measurements and late Quaternary slip rates on faults. Tectonophysics, 2013, 584: 267-280.

Dong Z P, Feng J G, Wang X, et al. Analysis on characteristics of seismic migration activity in Qilianshan tectonic zone (in Chinese). Recent Dev World Seismol, 2007, 10: 8–14 [董治平, 冯建刚, 王先, 等. 祁连山构造带地震迁移活动特征分析. 国际地震动态, 2007, 10: 8–14].

Guo P, Han Z J, Jiang W L, et al. Holocene left-lateral slip rate of the Lenglongling fault, northeastern margin of the Tibetan Plateau (in Chinese). Seismol Geol, 2017, 39: 323–341 [郭鹏, 韩竹军, 姜文亮, 等. 青藏高原东北缘冷龙岭断裂全新世左旋滑动速率. 地震地质, 2017, 39: 323–341].

He W G, Yuan D Y, Ge W P, et al. Determination of the slip rate of the Lenglongling fault in the middle and eastern segments of the Qilian Mountain active fault zone (in Chinese). Earthquake, 2010, 30: 131–137 [何文贵, 袁道阳, 葛伟鹏, 等. 祁连山活动断裂带中东段冷龙岭断裂滑动速率的精确厘定. 地震, 2010, 30: 131–137].

Guo P, Han Z, Mao Z. Paleoearthquakes and rupture behavior of the Lenglongling fault: Implications for seismic hazards of the northeastern margin of the Tibetan Plateau. J Geophys Res Solid Earth, 2019, 124: 1520-1543.

Lasserre C, Gaudemer Y, Tapponnier P, et al. Fast late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan fault, Qinghai, China. J Geophys Res, 2002, 107: 2276.

Liu-Zeng J, Klinger Y, Xu X. Millennial recurrence of large earthquakes on the Haiyuan fault near Songshan, Gansu Province, China. Bull Seismol Soc Am, 2007, 97: 14-34.

Wang M, Shen Z K. Present‐day crustal deformation of continental China derived from GPS and its tectonic implications. J Geophys Res Solid Earth, 2020, 125: e2019JB018774.

Ge W P, Wang M, Shen Z K, et al. Intersiesmic kinematics and defromation patterns on the upper crust of Qaidam-Qilianshan block (in Chinese). Chin J Geophys, 2013, 56: 2994–3010 [葛伟鹏, 王敏, 沈正康, 等. 柴达木-祁连山地块内部震间上地壳块体运动特征与变形模式研究. 地球物理学报, 2013, 56: 2994–3010].

Li Q, Jiang Z S, Wu Y Q, et al. Present-day tectonic deformation characteristics of Haiyuan-Liupanshan fault zone (in Chinese). J Geod Geodyn, 2013, 33: 18–22 [李强, 江在森, 武艳强, 等. 海原-六盘山断裂带现今构造变形特征. 大地测量与地球动力学, 2013, 33: 18–22].

Guo P, Han Z J, An Y F. Activity of the Lenglongling fault system and seismotectonics of the 2016 Ms 6.4 Menyuan earthquake. Sci China Earth Sci, 2017, 60: 929-942.

Li Z, Xu X, Tapponnier P, et al. Post-20 ka earthquake scarps along NE‐Tibet’s Qilian Shan frontal thrust: Multi‐millennial return, ~characteristic Co‐seismic slip, and geological rupture control. J Geophys Res Solid Earth, 2021, 126: e2021JB021889.

Zhou L, Ji L Y, Li Z J, et al. Study on current deformation process and seismicity of Lenglongling area based on small earthquakes and GPS data (in Chinese). J Seismol Res, 2022, 45: 1–7 [周琳, 季灵运, 李长军, 等. 利用小震和GPS资料分析冷龙岭地区现今变形过程与地震活动. 地震研究, 2022, 45: 1–7].

Zhang Y P, Zheng W J, Zhang D L. Late Pleistocene left-lateral slip rates of the Gulang Fault and its tectonic implications in eastern Qilian Shan (NE Tibetan Plateau), China. Tectonophysics, 2019, 756: 97-111.

Xu X, Yeats R S, Yu G. Five short historical earthquake surface ruptures near the silk road, Gansu Province, China. Bull Seismol Soc Am, 2010, 100: 541-561.

Yuan D Y, Champagnac J D, Ge W P. Late Quaternary right-lateral slip rates of faults adjacent to the lake Qinghai, northeastern margin of the Tibetan Plateau. Geol Soc Am Bull, 2011, 123: 2016-2030.

Li C Y, Zhang P Z, Yin J H, et al. Late Quaternary left-lateral slip rate of the Haiyuan fault, northeastern margin of the Tibetan Plateau. Tectonics, 2009, 28: 357–369.

Zheng W J, Zhang P Z, Ge W P. Late Quaternary slip rate of the South Heli Shan Fault (northern Hexi Corridor, NW China) and its implications for northeastward growth of the Tibetan Plateau. Tectonics, 2013, 32: 271-293.

Liang S, Zheng W, Zhang D, et al. Paleoearthquakes constrained by stratigraphic sequences of different drainages since Late Pleistocene: A case study along the Gulang fault, NE Tibetan Plateau. Front Earth Sci, 2021, 9: 640.

Yu J, Zheng W, Kirby E. Kinematics of late Quaternary slip along the Yabrai fault: Implications for Cenozoic tectonics across the Gobi Alashan block, China. Lithosphere, 2016, 8: 199-218.

Li X, Zhang P, Zheng W. Kinematics of Late Quaternary slip along the Qishan‐Mazhao fault: Implications for Tectonic deformation on the southwestern Ordos, China. Tectonics, 2018, 37: 2983-3000.

Chen W, Ni S, Kanamori H. CAPjoint, a computer software package for joint inversion of moderate earthquake source parameters with local and teleseismic waveforms. Seismol Res Lett, 2015, 86: 432-441.

Zhu L, Helmberger D V. Advancement in source estimation techniques using broadband regional seismograms. Bull Seismol Soc Am, 1996, 86: 1634-1641.

Bassin C, Laske G, Masters G. The current limits of resolution for surface wave tomography in North America. EOS Trans AGU, 2000, 81.

Zhu L, Rivera L A. A note on the dynamic and static displacements from a point source in multilayered media. Geophys J Int, 2002, 148: 619-627.

Bai Q, Ni S, Chu R. GCAPjoint, a software package for full moment tensor inversion of moderately strong earthquakes with local and teleseismic waveforms. Seismol Res Lett, 2020, 91: 3550-3562.

Snoke J A. FOCMEC: FOCal MEChanism determinations. Int Geophys, 2003, 81: 1629–1630.

Helffrich G R. How good are routinely determined focal mechanisms? Empirical statistics based on a comparison of Harvard, USGS and ERI moment tensors. Geophys J Int, 1997, 131: 741-750.

Zhang P Z, Min W, Deng Q D, et al. Paleo-earthquakes and recurrence of strong earthquakes in the Haiyuan fault zone (in Chinese). Sci China Ser D Earth Sci, 2003, 33: 705–713 [张培震, 闵伟, 邓起东, 等. 海原活动断裂带的古地震与强震复发规律. 中国科学D辑: 地球科学, 2003, 33: 705–713].

He X, Liang H, Zhang P. The 2019 Ms 4.2 and 5.2 Beiliu earthquake sequence in South China: Complex conjugate strike-slip faulting revealed by rupture directivity analysis. Seismol Res Lett, 2021, 92: 3327-3338.

Feng W, Omari K, Samsonov S V V. An automated InSAR processing system: Potentials and challenges. In: 2016 IEEE International Geoscience and Remote Sensing Symposium. New York: IEEE, 2016. 16444976.

Feng W, Samsonov S, Qiu Q, et al. Orthogonal fault rupture and rapid postseismic deformation following 2019 Ridgecrest, California, earthquake sequence revealed from geodetic observations. Geophys Res Lett, 2020, 47: e2019GL086888.

Sandwell D, Mellors R, Tong X. Open radar interferometry software for mapping surface deformation. Eos Trans AGU, 2011, 92:

Goldstein R M, Werner C L. Radar interferogram filtering for geophysical applications. Geophys Res Lett, 1998, 25: 4035-4038.

Wan Y G, Shen Z K, Diao G L, et al. An algorithm of fault parameter determination using distribution of small earthquakes and parameters of regional stress field and its application to Tangshan earthquake sequence (in Chinese). Chin J Geophys, 2008, 51: 793–804 [万永革, 沈正康, 刁桂苓, 等. 利用小震分布和区域应力场确定大震断层面参数方法及其在唐山地震序列中的应用. 地球物理学报, 2008, 51: 793–804].

Simons M. Coseismic deformation from the 1999 Mw 7.1 Hector Mine, California, earthquake as inferred from InSAR and GPS observations. Bull Seismol Soc Am, 2002, 92: 1390-1402.

Feng W, Lindsey E, Barbot S, et al. Source characteristics of the 2015 Mw 7.8 Gorkha (Nepal) earthquake and its Mw 7.2 aftershock from space geodesy. Tectonophysics, 2017, 712-713: 747–758.

Feng W, Samsonov S, Almeida R. Geodetic Constraints of the 2017 Mw 7.3 Sarpol Zahab, Iran Earthquake, and its implications on the structure and mechanics of the Northwest Zagros thrust‐fold belt. Geophys Res Lett, 2018, 45: 6853-6861.

Fialko Y. Evidence of fluid-filled upper crust from observations of post-seismic deformation due to the 1992 MW 7.3 Landers earthquake. J Geophys Res, 2004, 109: B08401.

Ward S N, Barrientos S E. An inversion for slip distribution and fault shape from geodetic observations of the 1983, Borah Peak, Idaho, Earthquake. J Geophys Res, 1986, 91: 4909-4919.

Okada Y. Surface deformation due to shear and tensile faults in a half-space. Bull Seism Soc Am, 1985, 85: 1135–1154.

Wan Y G, Shen Z K, Wang M, et al. Coseismic slip distribution of the 2001 Kunlun mountain pass west earthquake constrained using GPS and InSAR data (in Chinese). Chin J Geophys, 2008, 51: 1074–1084 [万永革, 沈正康, 王敏, 等. 根据GPS和InSAR数据反演2001年昆仑山口西地震同震破裂分布. 地球物理学报, 2008, 51: 1074–1084].

Feng W P, Xu L S, Li Z H. Fault parameters of the October 2008 Damxung Mw 6.3 earthquake from InSAR inversion and its tectonic implication (in Chinese). Chin J Geophys, 2010, 53: 1134–1142 [冯万鹏, 许力生, 李振洪. 2008年10月当雄Mw 6.3级地震断层参数的InSAR反演及其构造意义. 地球物理学报, 2010, 53: 1134–1142].

Li Y, Luo Y, Zhang J, et al. The 2015 Mw 6.4 Pishan earthquake, China: Geodetic modelling inferred from Sentinel-1A TOPS interferometry. Surv Rev, 2017, 50: 1–9.

Feng W, Samsonov S, Tian Y. Surface deformation associated with the 2015 Mw 8.3 Illapel earthquake revealed by satellite-based geodetic observations and its implications for the seismic cycle. Earth Planet Sci Lett, 2017, 460: 222-233.

Li Z, Elliott J R, Feng W, et al. The 2010 Mw 6.8 Yushu (Qinghai, China) earthquake: Constraints provided by InSAR and body wave seismology. J Geophys Res Solid Earth, 2011, 116: B10302.

Liu M, Li H, Peng Z. Spatial-temporal distribution of early aftershocks following the 2016 Ms 6.4 Menyuan, Qinghai, China Earthquake. Tectonophysics, 2019, 766: 469-479.

Ekström G, Nettles M, Dziewoński A M. The global CMT project 2004–2010: Centroid-moment tensors for 13017 earthquakes. Phys Earth Planet Inter, 2012, 200-201: 1–9.

Duputel Z, Rivera L, Kanamori H. W phase source inversion for moderate to large earthquakes (1990–2010). Geophys J Int, 2012, 189: 1125-1147.

Li Y, Jiang W, Zhang J, et al. Space geodetic observations and modeling of on seismogenic tectonic motion. Remote Sens, 2016, 8: 519–529.

Zhang H, Gao Y, Shi Y T, et al. Tectonic stress analysis based on the crustal seismic anisotropy in the northeastern margin of Tibetan Plateau (in Chinese). Chin J Geophys, 2012, 55: 95–104 [张辉, 高原, 石玉涛, 等. 基于地壳介质各向异性分析青藏高原东北缘构造应力特征. 地球物理学报, 2012, 55: 95–104].

Ye Z, Gao R, Lu Z. A lithospheric-scale thrust-wedge model for the formation of the northern Tibetan Plateau margin: Evidence from high-resolution seismic imaging. Earth Planet Sci Lett, 2021, 574:

Okada Y. Internal deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am, 1992, 82: 1018-1040.

King G C P, Stein R S, Lin J. Static stress changes and the triggering of earthquakes. Bull Seism Soc Am, 1994, 84: 935–953.

Xiao J, He J. 3D finite‐element modeling of earthquake interaction and stress accumulation on main active faults around the northeastern Tibetan Plateau edge in the past ~100 years. Bull Seismol Soc Am, 2015, 105: 2724-2735.

Li Y, Shan X, Qu C. Fault locking and slip rate deficit of the Haiyuan-Liupanshan fault zone in the northeastern margin of the Tibetan Plateau. J Geodyn, 2016, 102: 47-57.

Yao S, Yang H. Hypocentral dependent shallow slip distribution and rupture extents along a strike-slip fault. Earth Planet Sci Lett, 2022, 578:

Wessel P, Smith W H F, Scharroo R. Generic mapping tools: Improved version released. Eos Trans AGU, 2013, 94: 409-410.