Segmentation-based deep-learning approach for surface-defect detection

Journal of Intelligent Manufacturing - Tập 31 Số 3 - Trang 759-776 - 2020
Domen Tabernik1, Samo Šela2, J. Skvarč3, Danijel Skočaj1
1Faculty of Computer and Information Science, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
2Kolektor Group d.o.o., Vojkova 10, 5280 Idrija, Slovenia
3Kolektor Orodjarna d. o. o., Vojkova 10, 5280, Idrija, Slovenia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/ .

Bulnes, F. G., Usamentiaga, R., Garcia, D. F., & Molleda, J. (2016). An efficient method for defect detection during the manufacturing of web materials. Journal of Intelligent Manufacturing, 27(2), 431–445. https://doi.org/10.1007/s10845-014-0876-9 .

Chen, P. H., & Ho, S. S. (2016). Is overfeat useful for image-based surface defect classification tasks? In IEEE international conference on image processing (ICIP) (pp. 749–753).

Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder–Decoder with atrous separable convolution for semantic image segmentation. Tech. rep.

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. Computer Vision and Pattern Recognition, 2017, 1800–1807. https://doi.org/10.1109/CVPR.2017.195 .

Cognex. (2018). VISIONPRO VIDI: Deep learning-based software for industrial image analysis. https://www.cognex.com/products/machine-vision/vision-software/visionpro-vidi

Faghih-Roohi, S., Hajizadeh, S., Núñez, A., Babuska, R., & Schutter, B. D. (2016). Deep convolutional neural networks for detection of rail surface defects deep convolutional neural networks for detection of rail surface defects. In International joint conference on neural networks (pp. 2584–2589).

Kaiming, H., Gkioxara, G., Dollar, P., & Girshick, R. (2017). Mask R-CNN. In ICCV (pp. 2961–2969).

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In Advances in neural information processing systems (Vol. 25, pp. 1097–1105).

Kuo, C. F. J., Hsu, C. T. M., Liu, Z. X., & Wu, H. C. (2014). Automatic inspection system of LED chip using two-stages back-propagation neural network. Journal of Intelligent Manufacturing, 25(6), 1235–1243. https://doi.org/10.1007/s10845-012-0725-7 .

Lin, H., Li, B., Wang, X., Shu, Y., & Niu, S. (2018). Automated defect inspection of LED chip using deep convolutional neural network. Journal of Intelligent Manufacturing, 1–10. https://doi.org/10.1007/s10845-018-1415-x .

Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., & Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. LNCS 8693 LNCS(PART 5):740–755.

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (Vol. 8828, pp. 3431–3440). https://doi.org/10.1109/CVPR.2015.7298965 .

Masci, J., Meier, U., Ciresan, D., Schmidhuber, J., & Fricout, G. (2012). Steel defect classification with Max-Pooling Convolutional Neural Networks. In Proceedings of the international joint conference on neural networks. https://doi.org/10.1109/IJCNN.2012.6252468 .

Oztemel, E., & Gursev, S. (2018). Literature review of Industry 4.0 and related technologies. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-018-1433-8 .

Paniagua, B., Vega-Rodríguez, M. A., Gomez-Pulido, J. A., & Sanchez-Perez, J. M. (2010). Improving the industrial classification of cork stoppers by using image processing and Neuro-Fuzzy computing. Journal of Intelligent Manufacturing, 21(6), 745–760. https://doi.org/10.1007/s10845-009-0251-4 .

Rački, D., Tomaževič, D., & Skočaj, D. (2018). A compact convolutional neural network for textured surface anomaly detection. In IEEE winter conference on applications of computer vision (pp. 1331–1339). https://doi.org/10.1109/WACV.2018.00150 .

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. In Medical image computing and computer-assisted intervention—MICCAI 2015 (pp. 234–241).

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015). ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211–252. https://doi.org/10.1007/s11263-015-0816-y .

Sermanet, P., & Eigen, D. (2014). OverFeat : Integrated recognition, localization and detection using convolutional networks. In International conference on learning representations (ICLR2014), CBLS.

Weimer, D., Scholz-Reiter, B., & Shpitalni, M. (2016). Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection. CIRP Annals-Manufacturing Technology, 65(1), 417–420. https://doi.org/10.1016/j.cirp.2016.04.072 .

Weimer, D., Thamer, H., & Scholz-Reiter, B. (2013). Learning defect classifiers for textured surfaces using neural networks and statistical feature representations. Procedia CIRP, 7, 347–352. https://doi.org/10.1016/j.procir.2013.05.059 .

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2016). Learning deep features for discriminative localization. In Computer vision and pattern recognition.