Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABAA receptor α1 subtype
Tóm tắt
Từ khóa
Tài liệu tham khảo
Barnard, E. Subtypes of gamma-aminobutyric acid A receptors: classification on the basis of subunit structure and receptor function. Pharmacol. Rev. 50, 291–313 (1998).
Sieghart, W. Structure and function of γ-aminobutyric acidA receptor subtypes. Pharmacol. Rev. 47, 181–234 (1995).
Pritchett, D. B., Luddens, H. & Seeburg, P. H. Type I and type II GABAA-benzodiazepine receptors produced in transfected cells. Science 245, 1389–1392 (1989).
Pritchett, D. B. & Seeburg, P. H. γ-Aminobutyric acid A receptor α5-subunit creates novel type II benzodiazepine pharmacology. J. Neurochem. 54, 1802–1804 (1990).
Wieland, H. A., Luddens, H. & Seeburg, P. H. A single histidine in GABAA receptors is essential for benzodiazepine agonist binding. J. Biol. Chem. 267, 1426–1429 (1992).
Rudolph, U. et al. Benzodiazepine actions mediated by specific γ-aminobutyric acid A receptor subtypes. Nature 410, 796–800 (1999).
Soriano, P., Montgomery, C., Geske, R. & Bradley, A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64, 693–702 (1991).
Rosahl, T. W. et al. Short-term synaptic plasticity is altered in mice lacking synapsin I. Cell 75, 661–670 (1993).
Rosahl, T. W. et al. Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375, 488–493 (1995).
Schwenk, F., Baron, U. & Rajewsky, K. A. cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res. 23, 5080–5081 (1995).
Fritschy, J. M. & Mohler, H. GABAA-receptor heterogeneity in the adult rat brain: Differential regional and cellular distribution of seven major subunits. J. Comp. Neurol. 359, 154–194 (1995).
Wisden, W., Laurie, D. J., Monyer, H. & Seeburg, P. H. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J. Neurosci. 12, 1040–1062 (1992).
Duggan, M. J. & Stephenson, F. A. Biochemical evidence for the existence of γ-aminobuyrate A receptor iso-oligomers. J. Biol. Chem. 265, 3831–3835 (1990).
McKernan, R. M. et al. GABAA receptors immunopurified from rat brain with alpha subunit specific antibodies have unique pharmacological properties. Neuron 7, 667–676 (1991).
Luddens, H. et al. Cerebellar GABAA receptor selective for a behavioural alcohol antagonist. Nature 346, 648–651 (1990).
Wisden, W. et al. Cloning, pharmacological characteristics and expression pattern of the rat GABAA receptor α4 subunit. FEBS Lett. 289, 227–230 (1991).
Triet, D. Animal models for the study of anti-anxiety agents: a review. Neurosci. Biobehav. Rev. 9, 203–222 (1985).
Dawson, G. R. & Tricklebank, M. D. Use of the elevated plus maze in the search for novel anxiolytic agents. Trends Pharmacol. Sci. 16, 33–36 (1995).
Broughton, H. et al. patent WO 98/04559 (1998).
Hadingham, K. L. et al. Stable expression of mammalian type A gamma-aminobutyric acid receptors in mouse cells: demonstration of functional assembly of benzodiazepine-responsive sites. Proc. Natl. Acad. Sci. USA 89, 6378–6382 (1992).
Hadingham, K. L. et al. Cloning of cDNA sequences encoding human alpha 2 and alpha 3 gamma-aminobutyric acid A receptor subunit and characterization of the benzodiazepine pharmacology of recombinant alpha 1-, alpha 2-, alpha 3-, and alpha 5-containing human gamma-aminobutyric acid A receptors. Mol. Pharmacol. 43, 970–975 (1993).
Bayley, P. J., Bentley, G. D., Jackson, A., Williamson, D. & Dawson, G. R. Comparison of benzodiazepine (BZ) receptor agonists in two rodent activity tests. J. Psychopharmacol. 10, 206–213 (1996).
Atack, J. R., Smith, A. J., Emms, F. & McKernan, R. M. Regional differences in the inhibition of mouse in vivo [3H]Ro 15–1788 binding reflect selectivity for α1 versus α2 and α3 subunit-containing GABAA receptors. Neuropsychopharmacology 20, 255–262 (1999).
Fritschy, J. M. et al. Five subtypes of type A γ-aminobutyric acid receptors identified in neurons by double and triple immunofluorescence staining with subunit-specific antibodies. Proc. Natl. Acad. Sci. USA 89, 6726–6730 (1992).
Gao, B., Fritschy, J. M., Benke, D. & Mohler, H. Neuron-specific expression of GABAA-receptor subtypes: differential association of the α1- and α3-subunits with serotonergic and GABAergic neurons. Neuroscience 54, 881–892 (1993).
Sauer, B. Manipulation of transgenes by site-specific recombination: use of Cre recombinase. Methods Enzymol. 225, 890–900 (1993).
Quirk, K., Gillard, N. P., Ragan, C. I., Whiting, P. J. & McKernan, R. M. Model of subunit composition of gamma-aminobutyric acid A receptor subtypes expressed in rat cerebellum with respect to their alpha and gamma/delta subunits. J. Biol. Chem. 269, 16020–16028 (1994).
Sur, C., Fresu, L., Howell, O., McKernan, R. M. & Atack, J. R. Autoradiographic localization of alpha5 subunit-containing GABAA receptors in rat brain. Brain Res. 822, 265–270 (1999).
Sur, C. et al. Preferential coassembly of alpha4 and delta subunits of the gamma-aminobutyric acid A receptor in rat thalamus. Mol. Pharmacol. 56, 110–115 (1999).
Laurie, D. J., Seeburg, P. H. & Wisden, W. The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. II. Olfactory bulb and cerebellum. J. Neurosci. 12, 1063–1076 (1992).
Collinson, N. & Dawson, G. R. On the elevated plus-maze the anxiolytic-like effects of 5-HT1A agonist, 8-OH-DPAT, but not the anxiogenic-like effects of the 5-HT1A partial agonist, buspirone, are blocked by the 5-HT1A antagonist, WAY 100635. Psychopharmacology 132, 35–43 (1997).
Whiting, P. J. et al. Neuronally restricted RNA splicing regulates the expression of a novel GABAA receptor subunit conferring atypical functional properties. J. Neurosci. 17, 5027–5037 (1997).