Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis

Enzyme and Microbial Technology - Tập 90 - Trang 53-60 - 2016
Camila Florencio1,2,3, F. M. Cunha1,4, Alberto C. Badino2,4, Cristiane S. Farinas1,2,4, Eduardo Ximenes3, Michael R. Ladisch3
1Embrapa Instrumentation, 1452 XV de Novembro Street, 13560-970 Sao Carlos, SP, Brazil
2Graduate Program of Biotechnology, Federal University of Sao Carlos, 13565-905 Sao Carlos, SP, Brazil
3Laboratory of Renewable Resources Engineering, Department of Agricultural and Biological Engineering, Purdue University, IN 47907, West Lafayette, IN, USA
4Graduate Program of Chemical Engineering, Federal University of Sao Carlos, 13565-905 Sao Carlos, SP, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Soccol, 2010, Bioethanol from lignocelluloses: status and perspectives in Brazil, Bioresour. Technol., 101, 4820, 10.1016/j.biortech.2009.11.067

Pereira, 2015, 2G ethanol from the whole sugarcane lignocellulosic biomass, Biotechnol. Biofuels, 8, 1, 10.1186/s13068-015-0224-0

Sorensen, 2011, Onsite enzyme production during bioethanol production from biomass: screening for suitable fungal strains, Appl. Biochem. Biotechnol., 164, 1058, 10.1007/s12010-011-9194-2

Delabona, 2013, Understanding the cellulolytic system of Trichoderma harzianum P49P11 and enhancing saccharification of pretreated sugarcane bagasse by supplementation with pectinase and alpha-L-arabinofuranosidase, Bioresour. Technol., 131, 500, 10.1016/j.biortech.2012.12.105

Cunha, 2012, Sequential solid-state and submerged cultivation of Aspergillus niger on sugarcane bagasse for the production of cellulase, Bioresour. Technol., 112, 270, 10.1016/j.biortech.2012.02.082

Cunha, 2015, Three-phasic fermentation systems for enzyme production with sugarcane bagasse in stirred tank bioreactors: effects of operational variables and cultivation method, Biochem. Eng. J., 97, 32, 10.1016/j.bej.2015.02.004

Florencio, 2015, Validation of a novel sequential cultivation method for the production of enzymatic cocktails from Trichoderma strains, Appl. Biochem. Biotechnol., 175, 1389, 10.1007/s12010-014-1357-5

Kuhls, 1996, Molecular evidence that the asexual industrial fungus Trichoderma reesei is a clonal derivative of the ascomycete Hypocrea jecorina, Proc. Natl. Acad. Sci. U. S. A, 93, 7755, 10.1073/pnas.93.15.7755

Nevalainen, 1994, On the safety of Trichoderma reesei, J. Biotechnol., 37, 193, 10.1016/0168-1656(94)90126-0

Martinez, 2008, Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn Hypocrea jecorina), Nat. Biotechnol., 26, 553, 10.1038/nbt1403

de Vries, 2001, Aspergillus enzymes involved in degradation of plant cell wall polysaccharides, Microbiol. Mol. Biol. Rev., 65, 497, 10.1128/MMBR.65.4.497-522.2001

Pandey, 1999, Solid state fermentation for the production of industrial enzymes, Curr. Sci., 77, 149

Schuster, 2002, On the safety of Aspergillus niger—a review, Appl. Microbiol. Biotechnol., 59, 426, 10.1007/s00253-002-1032-6

Pel, 2007, Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS513.88, Nat. Biotechnol., 25, 221, 10.1038/nbt1282

Berka, 1992, Industrial enzymes from Aspergillus species, Biotecnhology, 23, 155

Borin, 2015, Comparative secretome analysis of Trichoderma reesei and Aspergillus niger during growth on sugarcane biomass, PLoS One, 10, 1, 10.1371/journal.pone.0129275

da Silva, 2015, Secretomic analysis reveals multi-enzymatic complexes in Trichoderma reesei grown in media containing lactose or galactose, Bioenergy Res., 8, 1906, 10.1007/s12155-015-9648-4

Marx, 2013, Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse, Biotechnol. Biofuels, 6, 172, 10.1186/1754-6834-6-172

Jun, 2013, Insights into enzyme secretion by filamentous fungi: comparative proteome analysis of Trichoderma reesei grown on different carbon sources, J. Proteomics, 89, 191, 10.1016/j.jprot.2013.06.014

Adav, 2012, Quantitative secretomic analysis of Trichoderma reesei strains reveals enzymatic composition for lignocellulosic biomass degradation, Mol. Cell Proteomics, 11, 1, 10.1074/mcp.M111.012419

Adav, 2010, Quantitative iTRAQ secretome analysis of Aspergillus niger reveals novel hydrolytic enzymes, J. Proteome Res., 9, 3932, 10.1021/pr100148j

Couri, 1995, Genetic manipulation of Aspergillus niger for increased synthesis of pectinolytic enzymes, Rev. Microbiol., 26, 314

Mandels, 1976, Recent advances in cellulase technology, J. Ferment. Technol., 54, 267

Cunha, 2012, Indirect method for quantification of cellular biomass in a solids containing medium used as pre-culture for cellulase production, Biotechnol. Bioprocess Eng., 17, 100, 10.1007/s12257-011-0405-z

Dien, 2008, Enzyme characterization for hydrolysis of AFEX and liquid hot-water pretreated distillers' grains and their conversion to ethanol, Bioresour. Technol., 99, 5216, 10.1016/j.biortech.2007.09.030

Ghose, 1987, Measurement of cellulase activities, Pure Appl. Chem., 59, 257, 10.1351/pac198759020257

Miller, 1959, Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Chem., 31, 426, 10.1021/ac60147a030

C. Florencio, F.M., Cunha, A.C., Badino, C.S., Farinas, E., Ximenes, M.R. Ladisch, Secretome data from Trichoderma reesei and Aspergillus niger cultivated upon submerged and sequential fermentation methods. Data in Brief (concomitantly submitted with this manuscript).

Sluiter, 2008, Determination of structural carbohydrates and lignin, in biomass, golden, CO, USA, Nat. Renew. Energy Lab., 1

Sternberg, 1977, Beta-glucosidase: microbial production and effect on enzymatic hydrolysis of cellulose, Can. J. Microbiol., 23, 139, 10.1139/m77-020

Ximenes, 2010, Inhibition of cellulases by phenols, Enzyme Microb. Technol., 46, 170, 10.1016/j.enzmictec.2009.11.001

Adav, 2012, Label free quantitative proteomic analysis of secretome by Thermobifida fusca on different lignocellulosic biomass, J. Proteomics, 75, 3694, 10.1016/j.jprot.2012.04.031

Rogowski, 2014, Evidence that GH115 alpha-glucuronidase activity, which is required to degrade plant biomass is dependent on conformational flexibility, J. Biol. Chem., 289, 53, 10.1074/jbc.M113.525295

Herpoel-Gimbert, 2008, Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains, Biotechnol. Biofuels, 1, 1, 10.1186/1754-6834-1-18

Zaldivar, 2001, Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration, Appl. Microbiol. Biotechnol., 56, 17, 10.1007/s002530100624

Muthuvelayudham, 2006, Fermentative production and kinetics of cellulase protein on Trichoderma reesei using sugarcane bagasse and rice straw, Afr. J. Biotechnol., 5, 1873

Do Vale, 2014, Cellulase systems in Trichoderma: an overview, 229

Cantarel, 2009, The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics, Nucleic Acids Res., 37, 233, 10.1093/nar/gkn663

Harvey, 2000, Comparative modeling of the three-dimensional structures of family 3 glycoside hydrolases, Proteins: Struct. Funct. Genet., 41, 257, 10.1002/1097-0134(20001101)41:2<257::AID-PROT100>3.0.CO;2-C

Chelikani, 2004, Diversity of structures and properties among catalases, Cell Mol. Life Sci., 61, 192, 10.1007/s00018-003-3206-5

Juhasz, 2005, Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources, Process Biochem., 40, 3519, 10.1016/j.procbio.2005.03.057

Foreman, 2003, Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei, J. Biol. Chem., 278, 31988, 10.1074/jbc.M304750200

Stricker, 2008, Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei), Appl. Microbiol. Biotechnol., 78, 211, 10.1007/s00253-007-1322-0

Kubicek, 2013, Systems biological approaches towards understanding cellulase production by Trichoderma reesei, J. Biotechnol., 163, 133, 10.1016/j.jbiotec.2012.05.020

Olsson, 2003, Influence of the carbon source on production of cellulases, hemicellulases and pectinases by Trichoderma reesei Rut C-30, Enzyme Microb. Technol., 33, 612, 10.1016/S0141-0229(03)00181-9

de Souza, 2011, Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse, Biotechnol. Biofuels, 4, 1, 10.1186/1754-6834-4-40

Langston, 2011, Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61, Appl. Environ. Microbiol., 77, 7007, 10.1128/AEM.05815-11

Sweeney, 2012, Biomass converting enzymes as industrial biocatalysts for fuels and chemicals: recent developments, Catalysts, 2, 244, 10.3390/catal2020244

Beeson, 2012, Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases, J. Am. Chem. Soc., 134, 90, 10.1021/ja210657t

Quinlan, 2011, Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components, Proc. Natl. Acad. Sci. U. S..A., 108, 15079, 10.1073/pnas.1105776108

Rosgaard, 2006, Efficiency of new fungal cellulase systems in boosting enzymatic degradation of barley straw lignocellulose, Biotechnol. Prog., 22, 493, 10.1021/bp050361o

Kim, 2011, Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass, Enzyme Microb. Technol., 48, 408, 10.1016/j.enzmictec.2011.01.007

Mhlongo, 2015, Lignocellulosic hydrolysate inhibitors selectively inhibit/deactivate cellulase performance, Enzyme Microb. Technol., 81, 16, 10.1016/j.enzmictec.2015.07.005

Ximenes, 2011, Deactivation of cellulases by phenols, Enzyme Microb. Technol., 48, 54, 10.1016/j.enzmictec.2010.09.006

Ko, 2015, Adsorption of enzyme onto lignins of liquid hot water pretreated hardwoods, Biotechnol. Bioeng., 112, 447, 10.1002/bit.25359

Wang, 2015, Investigation of the pellets produced from sugarcane bagasse during liquid hot water pretreatment and their impact on the enzymatic hydrolysis, Bioresour. Technol., 190, 7, 10.1016/j.biortech.2015.04.059

Yu, 2013, Liquid hot water pretreatment of sugarcane bagasse and its comparison with chemical pretreatment methods for the sugar recovery and structural changes, Bioresour. Technol., 129, 592, 10.1016/j.biortech.2012.11.099

Qing, 2010, Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes, Bioresour. Technol., 101, 9624, 10.1016/j.biortech.2010.06.137

Polizeli, 2005, Xylanases from fungi: properties and industrial applications, Appl. Microbiol. Biotechnol., 67, 577, 10.1007/s00253-005-1904-7

Pirota, 2014, Enzymatic hydrolysis of sugarcane bagasse using enzyme extract and whole solid-state fermentation medium of two newly isolated strains of Aspergillus oryzae, Chem. Eng. Trans., 38, 259

Ko, 2015, Effect of liquid hot water pretreatment severity on properties of hardwood lignin and enzymatic hydrolysis of cellulose, Biotechnol. Bioeng., 112, 252, 10.1002/bit.25349

Kim, 2015, Hydrolysis-Determining substrate characteristics in liquid hot water pretreated hardwood, Biotechnol. Bioeng., 112, 677, 10.1002/bit.25465

Kim, 2013, Fractionation of cellulase and fermentation inhibitors from steam pretreated mixed hardwood, Bioresour. Technol., 135, 30, 10.1016/j.biortech.2012.10.130

Ladisch, 1980, Cellobiose hydrolysis by endoglucanase (glucan glucanohydrolase) from Trichoderma reesei – kinetics and mechanism, Biotechnol. Bioeng., 22, 1107, 10.1002/bit.260220602

Gong, 1977, Cellobiase from Trichoderma viride – purification properties, kinetics, and mechanism, Biotechnol. Bioeng., 19, 959, 10.1002/bit.260190703

Pirota, 2013, Saccharification of biomass using whole solid-state fermentation medium to avoid additional separation steps, Biotechnol. Prog., 29, 1430, 10.1002/btpr.1811

Pirota, 2014, Simplification of the biomass to ethanol conversion process by using the whole medium of filamentous fungi cultivated under solid-State fermentation, Bioenerg. Res., 7, 744, 10.1007/s12155-013-9406-4