Secondary phase induced electrical conductivity and improvement in thermoelectric power factor of zinc antimonide films
Tài liệu tham khảo
Snyder, 2008, Complex thermoelectric materials, Nat. Mater., 7, 105, 10.1038/nmat2090
Snyder, 2004, Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties, Nat. Mater., 3, 458, 10.1038/nmat1154
Tripathi, 2003, High-temperature thermoelectric performance of Si–Ge alloys MN Tripathi, CM Bhandari, J. Phys. Condens. Matter, 15, 5359, 10.1088/0953-8984/15/31/303
Chen, 2012, Nanostructured thermoelectric materials: current research and future challenge, Prog. Nat. Sci.: Met. Mater. Int., 22, 535, 10.1016/j.pnsc.2012.11.011
Yang, 2017, An insight into β-Zn4Sb3 from its crystal structure, thermoelectric performance, thermal stability and graded material, Mater. Today Energy, 3, 72, 10.1016/j.mtener.2017.02.005
Castellero, 2015, Effect of processing routes on the synthesis and properties of Zn4Sb3 thermoelectric alloy, J. Alloy. Comp., 653, 54, 10.1016/j.jallcom.2015.08.251
Toberer, 2010, Composition and the thermoelectric performance of β-Zn4Sb3, J. Mater. Chem., 20, 9877, 10.1039/c0jm02011g
Song, 2017, Zn vacancy formation, Zn evaporation and decomposition of ZnSb at elevated temperatures: influence on the microstructure and the electrical properties, J. Alloy. Comp., 710, 762, 10.1016/j.jallcom.2017.03.339
Zhang, 2003, Thermoelectric properties of ZnSb thin films prepared by magnetron sputtering, Thin Solid Films, 443, 84, 10.1016/S0040-6090(03)00855-1
Zheng, 2014, Enhanced thermoelectric properties of mixed zinc antimonide thin films via phase optimization, Appl. Surf. Sci., 292, 823, 10.1016/j.apsusc.2013.12.056
Liu, 2019, The thermoelectric properties of zinc antimonide thin films fabricated through single element composite target, Surf. Coating. Technol., 3261, 130, 10.1016/j.surfcoat.2019.01.048
Zheng, 2014, Zinc antimonide thin films prepared by ion beam sputtering deposition using ternary layers annealing method, J. Alloy. Comp., 594, 122, 10.1016/j.jallcom.2014.01.133
Zheng, 2015, The influence of the transformation of electronic structure and micro-structure on improving the thermoelectric properties of zinc antimonide thin films, Intermetallics, 64, 18, 10.1016/j.intermet.2015.04.012
Sun, 2012, Low-cost high-performance zinc antimonide thin films for thermoelectric applications, Adv. Mater., 24, 1693, 10.1002/adma.201104947
Fan, 2014, Thermoelectric properties of zinc antimonide thin film deposited on flexible polyimide substrate by RF magnetron sputtering, J. Mater. Sci., 25, 5060
Zhang, 2016, Reversible structural transition in spark plasma-sintered thermoelectric Zn4Sb3, J. Mater. Sci., 51, 2041, 10.1007/s10853-015-9514-y
Sitthichai, 2013, One-step synthesis of Zn4Sb3 nanocrystals and Zn4Sb3–ZnSb composites, Superlattice. Microst., 64, 433, 10.1016/j.spmi.2013.10.004
Zhang, 2003, Effects of ZnSb and Zn inclusions on the thermoelectric properties of β-Zn4Sb3, J. Alloy. Comp., 358, 252, 10.1016/S0925-8388(03)00074-4
Karthikeyan, 2018, Thermoelectric transport investigations on Cd/In substituted β-Zn4Sb3 compounds, Mater. Today Commun., 14, 128, 10.1016/j.mtcomm.2018.01.007
Faghaninia, 2015, First principles study of defect formation in thermoelectric zinc antimonide, β-Zn4Sb3, J. Phys. Condens. Matter, 27, 125502, 10.1088/0953-8984/27/12/125502
Zhu, 2013, The effect of secondary phase on thermoelectric properties of Zn4Sb3 compound, Nanomater. Energy, 2, 1172, 10.1016/j.nanoen.2013.04.010
Lin, 2014, Unexpected high-temperature stability of β-Zn4Sb3 opens the door to enhanced thermoelectric performance, J. Am. Chem. Soc., 136, 1497, 10.1021/ja410605f
Biswas, 2019, Ultralow thermal conductivity and low charge carrier scattering potential in Zn1-xCdxSb solid solutions for thermoelectric application, Mater. Today Energy, 12, 107, 10.1016/j.mtener.2018.12.014
Ur, 2005, Mechanical and thermoelectric properties of Zn4Sb3 and Zn4Sb3+Zn directly synthesized using elemental powders, Met. Mater. Int., 11, 435, 10.1007/BF03027492
Mozharivskyj, 2004, A promising thermoelectric Material: Zn4Sb3 or Zn6-δSb5. Its composition, structure, stability, and polymorphs. Structure and stability of Zn1-δSb, Chem. Mater., 16, 1580, 10.1021/cm035274a
Kennedy, 2016, Controlling preferred orientation and electrical conductivity of zinc oxide thin films by post growth annealing treatment, Appl. Surf. Sci., 367, 52, 10.1016/j.apsusc.2016.01.160
Murmu, 2019, Multifold improvement of thermoelectric power factor by tuning bismuth and antimony in nanostructured n-type bismuth antimony telluride thin films, Mater. Des., 163, 107549, 10.1016/j.matdes.2018.107549
Murmu, 2012, Effect of annealing on the structural, electrical and magnetic properties of Gd-implanted ZnO thin films, J. Mater. Sci., 47, 1119, 10.1007/s10853-011-5883-z
Sanchela, 2015, Effect of Sb deficiency on the thermoelectric properties of Zn4Sb3, Solid State Commun., 218, 49, 10.1016/j.ssc.2015.06.012
Doolittle, 1985, Algorithms for the rapid simulation of Rutherford backscattering spectra, Nucl. Instrum. Methods Phys. Res. B, 9, 344, 10.1016/0168-583X(85)90762-1
Fischer, 2015, Thermal and vibrational properties of thermoelectric ZnSb: exploring the origin of low thermal conductivity, Phys. Rev., 91, 224309, 10.1103/PhysRevB.91.224309
Justi, 1964, Untersuchungen an zonengeschmolzenen ZnSb-einkristallen, Adv. Energy Convers., 4, 27, 10.1016/0365-1789(64)90034-7
Zheng, 2017, Thermal stability of P-type BiSbTe alloys prepared by melt spinning and rapid sintering, Materials, 10, 617, 10.3390/ma10060617