Secondary electron-, Auger electron- and reflected electron-spectroscopy study on sp2-hybridization carbon materials: HOPG, carbon glass and carbon fiber
Tài liệu tham khảo
Chang, 1971, Auger electron spectroscopy, Surf. Sci., 25, 53, 10.1016/0039-6028(71)90210-X
Haas, 1972, Chemical effects in Auger electron spectroscopy, J. Appl. Phys., 43, 1853, 10.1063/1.1661409
Bonetto, 2021, Formation of graphitic films on Cu(111) via electron beam induced deposition, Vacuum, 183, 10.1016/j.vacuum.2020.109824
Da, 2012, Influence of surface roughness on elastically backscattered electrons, Surf. Interface Anal., 44, 647, 10.1002/sia.4807
Ding, 2014, Quantification of surface roughness effect on elastically backscattered electrons, Surf. Interface Anal., 46, 489, 10.1002/sia.5554
Da, 2011, Validity of the semi-classical approach for calculation of the surface excitation parameter, J. Phys. Condens. Matter, 23, 10.1088/0953-8984/23/39/395003
Da, 2012, Monte Carlo modeling of surface excitation in reflection electron energy loss spectroscopy spectrum for rough surfaces, J. Appl. Phys., 112, 10.1063/1.4739491
Tanuma, 2005, Experimental determination of electron inelastic mean free paths in 13 elemental solids in the 50 to 5000 eV energy range by elastic-peak electron spectroscopy, Surf. Interface Anal., 37, 833, 10.1002/sia.2102
Tanuma, 2008, Estimation of inelastic mean free paths in Au and Cu from their elastic peak intensity ratios without IMFP values of reference material in the 200-5000 eV energy range, J. Surf. Anal., 15, 195, 10.1384/jsa.15.195
Tougaard, 1987, Differential inelastic electron scattering cross sections from experimental reflection electron-energy-loss spectra: application to background removal in electron spectroscopy, Phys. Rev. B, 35, 6570, 10.1103/PhysRevB.35.6570
Werner, 1995, Influence of multiple elastic and inelastic scattering on photoelectron line shape, Phys. Rev. B, 52, 2964, 10.1103/PhysRevB.52.2964
Werner, 2005, Differential probability for surface and volume electronic excitations in Fe, Pd and Pt, Surf. Sci., 588, 26, 10.1016/j.susc.2005.05.023
Da, 2013, A reverse Monte Carlo method for deriving optical constants of solids from reflection electron energy-loss spectroscopy spectra, J. Appl. Phys., 113, 10.1063/1.4809544
Xu, 2018, Absolute determination of optical constants of three transition metals using reflection electron energy loss spectroscopy, J. Appl. Phys., 123, 10.1063/1.5012013
Yang, 2019, Optical properties of silicon and germanium determined by high-precision analysis of reflection electron energy loss spectroscopy spectra, Phys. Rev. B, 100, 10.1103/PhysRevB.100.245209
Baroody, 1950, A theory of secondary electron emission from metals, Phys. Rev., 78, 780, 10.1103/PhysRev.78.780
Ding, 1996, A Monte Carlo modeling of electron interaction with solids including cascade secondary electron production, Scanning, 18, 92, 10.1002/sca.1996.4950180204
Shih, 1997, Secondary electron emission studies, Appl. Surf. Sci., 111, 251, 10.1016/S0169-4332(96)00729-5
Ding, 2001, Monte Carlo study of secondary electron emission, J. Appl. Phys., 89, 718, 10.1063/1.1331645
Joy, 2004, Experimental secondary electron spectra under SEM conditions, J. Microsc., 215, 77, 10.1111/j.0022-2720.2004.01345.x
Zou, 2016, Surface sensitivity of secondary electrons emitted from amorphous solids: calculation of mean escape depth by a Monte Carlo method, J. Appl. Phys., 120, 10.1063/1.4972196
Hussain, 2020, Monte Carlo simulation study of secondary electron emission from semiconductor materials, J. Appl. Phys., 128, 10.1063/5.0012154
Becker, 1925, Über die Rückdiffusion, Reflexion und sekundärstrahlerregung langsamer Kathodenstrahlen, Ann. Phys., 79, 253, 10.1002/andp.19253831904
Bronstein, 1969
Willis, 1971, Graphite conduction band states from secondary electron emission spectra, Phys. Lett. A, 34, 231, 10.1016/0375-9601(71)90844-9
Willis, 1971, Experimental investigation of the band structure of graphite, Phys. Rev. B, 4, 2441, 10.1103/PhysRevB.4.2441
Willis, 1974, Secondary-electron emission spectroscopy and the observation of high-energy excited states in graphite: theory and experiment, Phys. Rev. B, 9, 1926, 10.1103/PhysRevB.9.1926
Koshikawa, 1973, Secondary and Auger electron spectra of a Cu-Be alloy, Phys. Lett. A, 44, 112, 10.1016/0375-9601(73)90810-4
Caputi, 1985, Angle-resolved secondary electron investigation of graphite: a band mapping, Surf. Sci., 152, 278, 10.1016/0039-6028(85)90155-4
Caputi, 1986, Secondary-electron emission and electron-energy-loss results on graphite single crystals, Phys. Rev. B, 34, 6080, 10.1103/PhysRevB.34.6080
Hoffman, 1990, High-energy angle-resolved secondary-electron emission spectroscopy of highly oriented pyrolytic graphite, J. Phys.-Condes. Matter, 2, 8099, 10.1088/0953-8984/2/40/010
Houston, 1986, Relationship between the Auger line shape and the electronic properties of graphite, Phys. Rev. B, 34, 1215, 10.1103/PhysRevB.34.1215
Ueno, 1988, Characteristic SE emission from graphite and glassy carbon surfaces, J. Appl. Phys., 27, 759, 10.1143/JJAP.27.L759
Law, 1983, Angle-resolved photoemission and secondary electron emission from single-crystal graphite, Phys. Rev. B, 28, 5332, 10.1103/PhysRevB.28.5332
Law, 1985, Constant final state spectroscopy of the interlayer state in graphite, J. Phys. C: Solid State Phys, 18, L297, 10.1088/0022-3719/18/11/004
Papagno, 1982, Graphite: Electronic and structural properties studied by electron-energy-loss and secondary-electron-emission spectroscopy, Phys. Rev. B, 26, 2320, 10.1103/PhysRevB.26.2320
Strocov, 2000, The 3D unoccupied band structure of graphite by very-low-energy electron diffraction, Appl. Surf. Sci., 162-163, 508, 10.1016/S0169-4332(00)00241-5
Takahashi, 1985, Angle-resolved ultraviolet photoelectron spectroscopy of the unoccupied band structure of graphite, Phys. Rev. B, 32, 8317, 10.1103/PhysRevB.32.8317
Lurie, 1977, The diamond surface II. Secondary electron emission, Surf. Sci., 65, 476, 10.1016/0039-6028(77)90460-5
Starnberg, 1992, Conduction band structure of VSe2 studied by inverse photoemission, secondary electron emission and total current spectroscopies, J. Phys. Condens. Matter, 4, 4075, 10.1088/0953-8984/4/15/020
Goto, 1994, True Auger spectral shapes: a step to standard spectra, Surf. Interface Anal., 22, 75, 10.1002/sia.740220119
Takeichi, 1997, True Auger electron spectra measured with a novel cylindrical mirror analyser (Au, Ag and Cu), Surf. Interface Anal., 25, 17, 10.1002/(SICI)1096-9918(199701)25:1<17::AID-SIA206>3.0.CO;2-0
Takeichi, 1996, True Auger spectral shapes (standards), Appl. Surf. Sci., 100, 25, 10.1016/0169-4332(96)00250-4
Bethe, 1941, On the theory of secondary emission, Phys. Rev., 59, 940
Baroody, 1950, A theory of secondary electron emission from metals, Phys. Rev., 78, 780, 10.1103/PhysRev.78.780
Barut, 1954, The mechanism of secondary electron emission, Phys. Rev., 93, 981, 10.1103/PhysRev.93.981
Bruining, 1954
Wolff, 1954, Theory of secondary electron cascade in metals, Phys. Rev., 95, 56, 10.1103/PhysRev.95.56
Lye, 1957, Theory of secondary emission, Phys. Rev., 107, 977, 10.1103/PhysRev.107.977
Koshikawa, 1974, A Monte Carlo calculation of low-energy secondary electron emission from metals, J. Phys. D Appl. Phys., 7, 1303, 10.1088/0022-3727/7/9/318
Sickafus, 1977, Linearized secondary-electron cnecades from the surfaces of metals. I. Clean surfaces of homogeneous specimens, Phys. Rev. B, 16, 1436, 10.1103/PhysRevB.16.1436
Sickafus, 1977, Linearized secondary-electron cnecades from the surfaces of metals. II. Surface aud subsurface sources, Phys. Rev. B, 16, 1448, 10.1103/PhysRevB.16.1448
Chung, 1974, Simple calculation of energy distribution of low-energy secondary electrons emitted from metals under electron bombardment, J. Appl. Phys., 45, 707, 10.1063/1.1663306
Chung MS, PhD thesis. (Caliafornia Univ.) 1976.
Ganachaud, 1979, A Monte-Carlo calculation of the secondary electron emission of normal metals: I. The model, Surf. Sci., 83, 498, 10.1016/0039-6028(79)90059-1
Hussain, 2021, Determination of electron backscattering coefficient of beryllium by a high-precision Monte Carlo simulation, Nucl. Mater. Energy, 26, 100862, 10.1016/j.nme.2020.100862
Mao, 2008, Electron inelastic scattering and secondary electron emission calculated without the single pole approximation, J. Appl. Phys., 104, 10.1063/1.3033564
Ding, 2008, On the energy distribution of secondary electrons emitted from metals, J. Surf. Anal., 15, 186, 10.1384/jsa.15.186
Everhart, 1976, Measurement of structure in the energy distribution of slow secondary electrons from aluminum, J. Appl. Phys., 47, 2941, 10.1063/1.323085
Da, 2017, Virtual substrate method for nanomaterials characterization, Nat. Commun., 8, 1, 10.1038/ncomms15629
Da, 2019, Observation of plasmon energy gain for emitted secondary electron in vacuo, J. Phy. Chem. Lett, 10, 5770, 10.1021/acs.jpclett.9b02135
Lang, 1979, Carbon surfaces: relation between secondary electron spectrum and long-range order, Surf. Sci., 80, 38, 10.1016/0039-6028(79)90661-7
Hoffman, 1994, Extended fine structure in the secondary electron emission spectra of graphite and glassy carbon, Surf. Interface Anal., 22, 590, 10.1002/sia.7402201125
Bellissimo, 2020, Secondary electron generation mechanisms in carbon allotropes at low impact electron energies, J. Electr. Spectrosc. Relat. Phenom, 241, 10.1016/j.elspec.2019.07.004
Rezaei, 2008, Development of short-carbon-fiber-reinforced polypropylene composite for car bonnet, Polym.-Plast. Technol. Eng, 47, 351, 10.1080/03602550801897323
Soutis, 2005, Carbon fiber reinforced plastics in aircraft construction, Mater. Sci. Eng. A, 412, 171, 10.1016/j.msea.2005.08.064
Suzuki, 1994, Activated carbon fiber: fundamentals and applications, Carbon, 32, 577, 10.1016/0008-6223(94)90075-2
Chung, 2012
Jenkins, 1971, Structure of glassy carbon, Nature, 231, 175, 10.1038/231175a0
Engstrom, 1982, Electrochemical pretreatment of glassy carbon electrodes, Anal. Chem., 54, 2310, 10.1021/ac00250a038
Pesin, 2002, Review Structure and properties of glass-like carbon, J. Mater. Sci., 37, 1, 10.1023/A:1013100920130
Rather, 1988