Second order iterative functional equations related to a competition equation

Aequationes mathematicae - Tập 89 - Trang 107-117 - 2014
Peter Kahlig1, Janusz Matkowski2
1Science Pool Vienna, Section of Hydrometeorology, Vienna, Austria
2Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, Zielona Gora, Poland

Tóm tắt

The functional equation related to competition ([2]) $$f\left( \frac{x+y}{1-xy}\right) =\frac{f\left( x\right) +f\left(y\right)} {1+f\left( x\right) f\left( y\right)},\qquad x,y\in\mathbb{R}, xy\neq 1,$$ for y = cx with a fixed c > 0, leads to the equation $$f\left( \frac{\left( 1+c\right) x}{1-cx^{2}}\right) =\frac{f\left(x\right) +f\left( cx\right)} {1+f\left( x\right) f\left( cx\right)},\qquad x\in \mathbb{R}, \left\vert x \right\vert <\frac{1}{\sqrt{c}}.$$ The case c = 1 (a first order iterative functional equation) was treated in [3]. In this paper we consider the case c ≠ 1 (when the equation is of the second order). We show that a function $${f:\mathbb{R} \rightarrow \mathbb{R},\,f\left( 0\right) =0}$$ , differentiable at the point 0 satisfies this functional equation iff there is a real p such that $${f=\tanh \circ \left( p\tan ^{-1} \right) }$$ which extends the main result of [3].

Tài liệu tham khảo

Aczél, J., Dhombres, J.: Functional Equations in Several Variables, Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1989) Kahlig, P.: A model of competition. Appl. Math. 39, 293–303 (2012) Kahlig P., Matkowski J.: On a functional equation related to competition. Aequat. Math. 87, 301–308 (2014). doi:10.1007/s00010-013-0215-9 Kahlig, P., Matkowski, J.: Iterative functional equations related to a competition equation. Aequat. Math. (in press). doi:10.1007/s00010-013-0248-0 Kuczma, M.: Functional equations in a single variable, Monografie Matematyczne 46. PWN Warszawa (1968) Kuczma, M., Choczewski, B., Ger, R.: Iterative Functional Equations, Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1990) Matkowski, J.: On the uniqueness of differentiable solutions of a functional equation. Bull. Acad. Polon. Sci. 18, 253–255 (1970) Matkowski, J.: On the existence of differentiable solutions of a functional equation. Bull. Acad. Polon. Sci. 19, 19–22 (1971) Matkowski, J.: The uniqueness solutions of a system of functional equations in some classes of functions. Aequat. Math. 8, 233–237 (1972)