Second-order,L 0-stable methods for the heat equation with time-dependent boundary conditions

E. H. Twizell1, Abba B. Gumel1, M. A. Arigu1
1Department of Mathematics and Statistics, Brunel University, Uxbridge, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

M. A. Arigu, Parallel and sequential algorithms for hyperbolic partial differential equations, Ph.D. thesis, Brunel University (1993).

T. A. Cheema, Higher-order parallel splitting methods for hyperbolic partial differential equations, Ph.D. thesis, Brunel University, in preparation.

J. Crank and P. J. Nicolson, A practical method for numerical integration of solutions of partial differential equations of heat conduction type, Proc. Camb. Phil. Soc. 43 (1947) 50–67.

J. R. G. Evans, M. J. Edirisinghe, J. K. Wright and J. Crank, On the removal of organic vehicle from moulded ceramic bodies, Proc. Roy. Soc. London Ser. A 432 (1991) 321–340.

A. R. Gourlay and J. Ll. Morris, The extrapolation of first-order methods for parabolic partial differential equations II, SIAM J. Numer. Anal. 17 (1980) 641–655.

A. B. Gumel, Parallel and sequential algorithms for second-order parabolic equations with applications, Ph.D. thesis, Brunel University (1993).

A. Q. M. Khaliq, Numerical methods for ordinary differential equations with applications to partial differential equations, Ph.D. thesis, Brunel University (1983).

A. Q. M. Khaliq and E. H. Twizell,L 0-stable splitting methods for the simple heat equation in two space dimensions with homogeneous boundary conditions, SIAM J. Numer. Anal. 23 (1986) 473–484.

K. Kubota and T. Ishizaki, A calculation of percutaneous drug absorption — I. Theoretical, Comput. Biol. Med. 16 (1986) 7–19.

K. Kubota and T. Ishizaki, A calculation of percutaneous drug absorption — II. Computation results, Comput. Biol. Med. 16 (1986) 21–37.

J. D. Lambert,Numerical Methods for Ordinary Differential Systems: The Initial-Value Problem (Wiley, Chichester, 1991).

J. D. Lawson, Some numerical methods for stiff ordinary and partial differential equations, in:Proc. 2nd Manitoba Conf. on Numerical Mathematics, Winnipeg, Canada (1972) pp. 27–34.

J. D. Lawson and J. Ll. Morris, The extrapolation of first-order methods for parabolic partial differential equations I, SIAM J. Numer. Anal. 15 (1978) 1212–1224.

J. H. Merkin, D. J. Needham and S. K. Scott, The development of travelling waves in a simple isothermal chemical system I. Quadratic autocatalysis with linear decay, Proc. Roy. Soc. London Ser. A 424 (1989) 187–209.

M. H. Padé, Sur la représentation approchée d'une fonction par des fractions rationelles, Ann. de l'École Normale Superieure 9 (1892).

D. A. Swayne, Time-dependent boundary and interior forcing in locally one-dimensional schemes, SIAM J. Sci. Statist. Comput. 8 (1987) 755–767.

D. A. Swayne, Time-dependent Dirichlet boundary conditions and fractional step methods, in:Numerical Mathematics, Singapore 1988, eds. R. P. Agarwal, Y. M. Chow and S. J. Wilson (Birkhäuser, Basel, 1988).

M. S. A. Taj, Higher-order parallel splitting methods for parabolic partial differential equations, Ph.D. thesis, Brunel University (1995).

D. A. Voss and A. Q. M. Khaliq, Parallel LOD methods for second-order time-dependent PDEs, Comput. Math. Appl. 30(10) (1995) 25–35.

D. A. Voss and A. Q. M. Khaliq, Time-stepping algorithms for semidiscretized linear parabolic PDEs based on rational approximants with distinct real poles, Adv. Comput. Math., this issue.