Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pt-M (M = Al, Co, Cu, Mo, Ni, Ti, V) binary systems
Tài liệu tham khảo
Stamenkovic, 2007, Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces, Nat. Mater., 6, 241, 10.1038/nmat1840
Wei, 2008, Electrochemically synthesized Cu / Pt core-shell catalysts on a porous carbon electrode for polymer electrolyte membrane fuel cells, J. Power Sources, 180, 84, 10.1016/j.jpowsour.2008.01.086
A. Freund, T. Lehmann, K. Starz, G. Heinz, R. Schwarz, Platinum-aluminum alloy catalyst for fuel cells and method of its production and use, US5767036 A, 1998.
Grgur, 1997, Electrooxidation of H 2 /CO Mixtures on a Well-Characterized Pt 75 Mo 25 Alloy Surface, J. Phys. Chem. B, 101, 3910, 10.1021/jp9704168
Gilroy, 2016, Bimetallic nanocrystals: syntheses, properties, and applications, Chem. Rev., 116, 10414, 10.1021/acs.chemrev.6b00211
Marks, 2016, Nanoparticle shape, thermodynamics and kinetics, J. Phys. Condens. Matter, 28, 53001, 10.1088/0953-8984/28/5/053001
Il Park, 2001, Estimation of order–disorder transition temperature in Pt–Co alloy by Monte Carlo simulation using modified embedded atom method, Scr. Mater., 45, 495, 10.1016/S1359-6462(01)01048-X
Creuze, 2008, Model of surface segregation driving forces and their coupling, Phys. Rev. B, 78, 75413, 10.1103/PhysRevB.78.075413
Yun, 2012, Monte Carlo simulations of the structure of Pt-based bimetallic nanoparticles, Acta Mater., 60, 4908, 10.1016/j.actamat.2012.05.032
Wang, 2005, Surface structures of cubo-octahedral Pt-Mo catalyst nanoparticles from Monte Carlo simulations, J. Phys. Chem. B, 109, 11683, 10.1021/jp050116n
Lundberg, 1987, Surface segregation and relaxation calculated by the embedded-atom method: application to face-related segregation on platinum-nickel alloys, Phys. Rev. B, 36, 4692, 10.1103/PhysRevB.36.4692
Wang, 2005, Monte Carlo simulations of segregation in Pt-Ni catalyst nanoparticles, J. Chem. Phys., 122, 10.1063/1.1828033
Legrand, 1990, Phase transitions in surface segregation of PtcNi1-c alloys from tight-binding Ising-model calculations, Phys. Rev. B, 41, 4422, 10.1103/PhysRevB.41.4422
Zhou, 2004, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Phys. Rev. B - Condens. Matter Mater. Phys., 69, 1, 10.1103/PhysRevB.69.144113
Zhou, 2001, Atomic scale structure of sputtered metal multilayers, Acta Mater., 49, 4005, 10.1016/S1359-6454(01)00287-7
Baskes, 1992, Modified embedded-atom potentials for cubic materials and impurities, Phys. Rev. B, 46, 2727, 10.1103/PhysRevB.46.2727
Cleri, 1993, Tight-binding potentials for transition metals and alloys, Phys. Rev. B, 48, 22, 10.1103/PhysRevB.48.22
Karolewski, 2001, Tight-binding potentials for sputtering simulations with fcc and bcc metals, Radiat. Eff. Defects Solids, 153, 239, 10.1080/10420150108211842
Lee, 2000, Second nearest-neighbor modified embedded-atom-method potential, Phys. Rev. B - Condens. Matter Mater. Phys., 62, 8564, 10.1103/PhysRevB.62.8564
Lee, 2001, Second nearest-neighbor modified embedded atom method potentials for bcc transition metals, Phys. Rev. B, 64, 184102, 10.1103/PhysRevB.64.184102
Lee, 2003, Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method, Phys. Rev. B, 68, 1, 10.1103/PhysRevB.68.144112
Lee, 2010, The modified embedded-atom method interatomic potentials and recent progress in atomistic simulations, Calphad Comput. Coupling Phase Diagr. Thermochem., 34, 510, 10.1016/j.calphad.2010.10.007
Kim, 2006, Modified embedded-atom method interatomic potentials for Ti and Zr, Phys. Rev. B - Condens. Matter Mater. Phys., 74, 10.1103/PhysRevB.74.014101
Dong, 2012, Atomistic modeling of pure Co and Co-Al system, Calphad Comput. Coupling Phase Diagr. Thermochem., 38, 7, 10.1016/j.calphad.2012.04.001
Plimpton, 1995, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys., 117, 1, 10.1006/jcph.1995.1039
Kim, 2011, First-principles calculations and thermodynamic modeling of the Al-Pt binary system, CALPHAD, 35, 20, 10.1016/j.calphad.2010.10.008
Kim, 2011, Thermodynamic modeling of fcc order/disorder transformations in the CoPt system, CALPHAD, 35, 323, 10.1016/j.calphad.2011.04.005
G. Inden, The mutual influence of magnetic and chemical ordering, MRS Online Proceedings Libr. Arch., vol. 19, p. 175.
Jain, 2013, Commentary: the materials project: a materials genome approach to accelerating materials innovation, APL Mater., 1, 0, 10.1063/1.4812323
Abe, 2006, Thermodynamic assessment of the Cu−Pt system, J. Phase Equilibria Diffus., 27, 5, 10.1361/105497196X92736
Miida, 1974, Electron microscope and diffraction study on the ordered structures of platinum-rich copper–platinum alloys, J. Appl. Crystallogr., 7, 50, 10.1107/S0021889874008697
Ocken, 1968, Phase equilibria and superconductivity in the molybdenum-platinum system, J. Less-Common Met., 15, 193, 10.1016/0022-5088(68)90053-2
Lu, 2009, Thermodynamic assessments of the Ni-Pt and Al-Ni-Pt systems, CALPHAD, 33, 450, 10.1016/j.calphad.2009.06.002
Li, 2008, Thermodynamic assessment of the Pt-Ti system, J. Alloy. Compd., 461, 189, 10.1016/j.jallcom.2007.07.047
Wang, 2008, Thermodynamic assessments of the V-Ge and V-Pt systems, Intermetallics, 16, 544, 10.1016/j.intermet.2008.01.002
Hart, 2014, Comprehensive search for new phases and compounds in binary alloy systems based on platinum-group metals, using a computational first-principles approach, Phys. Rev. X, 3, 1
Antolini, 2006, The methanol oxidation reaction on platinum alloys with the first row transition metals: the case of Pt-Co and -Ni alloy electrocatalysts for DMFCs: a short review, Appl. Catal. B Environ., 63, 137, 10.1016/j.apcatb.2005.09.014
Metropolis, 1953, Equation of state by Fast computing machines, J. Chem. Phys., 21, 1087, 10.1063/1.1699114
Ferguson, 2009
Kim, 2006, Modified embedded-atom method interatomic potential for the Fe-Pt alloy system, J. Mater. Res., 21, 10.1557/jmr.2006.0008
P. Bujard, “Ph.D. thesis,” University of Geneva, 198.
Dinsdale, 1991, SGTE data for pure elements, CALPHAD, 15, 317, 10.1016/0364-5916(91)90030-N
Zhang, 1999, An analytic MEAM model for all bcc transition metals, and references therein, Phys. B Condens. Matter, 262, 218
Brandes, 1992
Mezey, 1982, The surface free energies of solid chemical elements: calculation from internal free enthalpies of atomization, Jpn. J. Appl. Phys., 21, 10.1143/JJAP.21.1569
Huch, 1964, Das system Platin–aluminium, Z. für Anorg. und Allg. Chem., 329, 123, 10.1002/zaac.19643290116
Chauke, 2010, Theoretical investigation of the Pt3Al ground state, Intermetallics, 18, 417, 10.1016/j.intermet.2009.08.016
Wei, 2015, Theoretical study of the elastic and thermodynamic properties of Pt3Al with the L12 structure under high pressure, Condens. Matter Phys., 18, 10.5488/CMP.18.43601
Feng, 2011, Stability, thermal and mechanical properties of PtxAly compounds, Mater. Des., 32, 3231, 10.1016/j.matdes.2011.02.043
Chattopadhyay, 1976, Kristallstruktur von Pt2Al.r (In German), J. Less-Common Met., 45, 79, 10.1016/0022-5088(76)90198-3
Bhan, 1978, Ordered bcc-phases at high temperatures in alloys of transition metals and b-subgroup elements, Z. fuer Met, 69, 333
R. J. Lange, S. J. Lee, D. W. Lynch, P. C. Canfield, B. N. Harmon, and S. Zollner, “Ellipsometric and Kerr-effect studies of Pt 3 - X „ X ؍ Mn, Co …,” vol. 58, no. 1, pp. 351–358, 1998.
Leroux, 1988, Comparative investigation of structural and transport properties of L10 NiPt and CoPt phases; the role of magnetism, J. Phys. F. Met. Phys., 18, 2033, 10.1088/0305-4608/18/9/021
Capitan, 1999, Study of the chemical dependence of the effective pair potentials of Co–Pt alloy, J. Appl. Crystallogr., 32, 1039, 10.1107/S0021889899009887
Ahmed, 2009, X-ray diffraction study on the thermal properties of CuMPt6 (M = 3d elements) alloys, J. Alloy. Compd., 473, 1, 10.1016/j.jallcom.2008.05.045
Rooksby, 1964, Relations between the structures of phases in the system platinum-molybdenum, J. Less-Common Met., 6, 451, 10.1016/0022-5088(64)90090-6
Dwight, 1965, Equiatomic compounds of the transition and lanthanide elements with Rh, Ir, Ni and Pt, Acta Crystallogr., 18, 835, 10.1107/S0365110X65002050
Maldonado, 1964, Strukturuntersuchungen in einigen zu T 5-T 10 homologen und quasihomologen Legierungssystemen (The structural studies of some T 5-T 10 homologous and quasi-homologous alloy systems), Z. fuer Met., 55, 619
Stojković, 2008, Structure and electronic properties of Mo3 Pt, MoPt2, and MoPt3: first-principles calculations, Phys. Rev. B - Condens. Matter Mater. Phys., 77, 1, 10.1103/PhysRevB.77.193111
Pietrokowsky, 1965, Novel ordered phase, Pt8Ti, Nature, 206, 291, 10.1038/206291a0
Atrei, 1992, LEED structural analysis of the ( 001) surface of the ordered fee Pt3Ti alloy, Surf. Sci., 261, 64, 10.1016/0039-6028(92)90218-U
Sinha, 1969, Close-packed ordered AB 3 structures in binary transition metal alloys, Trans. Met. Soc. AIME, 245, 237
R. Mahlangu, “First principle study of Ti-Al and Pt-Ti alloys,” 2009.
Donkersloot, 1970, Martensitic transformations in gold-titanium, palladium-titanium and platinum-titanium alloys near the equiatomic composition, J. Less-Common Met., 20, 83, 10.1016/0022-5088(70)90092-5
Schryvers, 1986, Order-disorder phenomena in the platinum rich part of the PtV phase diagram, Acta Metall., 34, 43, 10.1016/0001-6160(86)90230-0
Waterstrat, 1973, The Vanadium-Platinum constitution diagram, Metall. Trans., 4, 455, 10.1007/BF02648698
Esch, 1944, Das system nickel—Platin, Z. für Elektrochem. und Angew. Phys. Chem., 50, 268
Smith, 1989, Phase diagrams of binary vanadium alloys, ASM Int.
Chen, 1993, Structure Determination of Pt3Ti(111) by Automated Tensor LEED, J. Phys.-Condens. Matter, 5, 4585, 10.1088/0953-8984/5/27/003
Oriani, 1962, Thermodynamics of ordering alloys—IV heats of formation of some alloys of transition metals, Acta Metall., 10, 879, 10.1016/0001-6160(62)90102-5
R. Hultgren, P.D. Desal, D.T. Hawkins, “M, Gleiser and KK Kelley.,” Am. Soc. Met. Met. Park, no. Selected Values of the Thermodynamic Properties of Binary Alloys, 1973.
McAlister, 1986, The Al-Pt (aluminum-platinum) system, Bull. Alloy Phase Diagr., 7, 47, 10.1007/BF02874982
Ferro, 1968, Activity coefficients and partial molar volumes of boron in platinum–rhodium alloys, Atti AN L, Cl. Sci. Fis. Mat. Nat., 45, 54
Guo, 1994, Standard enthalpies of formation of Ni3Ta, Pd3Ta, Pt3Nb, Pt2V and Pt3V by high-temperature direct synthesis calorimetry, J. Alloy. Compd., 205, 63, 10.1016/0925-8388(94)90767-6
Meschel, 2003, Thermochemistry of some binary alloys of noble metals (Cu, Ag, Au) and transition metals by high temperature direct synthesis calorimetry, J. Alloy. Compd., 350, 205, 10.1016/S0925-8388(02)00983-0
Benarchid, 2009, Enthalpies of formation of Mo–Pt alloys by high temperature direct reaction synthesis calorimetry, J. Chem. Thermodyn., 41, 383, 10.1016/j.jct.2008.10.006
Wu, 2000, Thermodynamic assessment of the Al-Pt binary system, J. Phase Equilibria, 21, 221, 10.1361/105497100770340011
Lu, 1991, First-principles statistical mechanics of structural stability of intermetallic compounds, Phys. Rev. B, 44, 512, 10.1103/PhysRevB.44.512
Curtarolo, 2005, Accuracy of ab initio methods in predicting the crystal structures of metals: a review of 80 binary alloys, Calphad Comput. Coupling Phase Diagr. Thermochem., 29, 163, 10.1016/j.calphad.2005.01.002
Amador, 1993, Internal strain effects on the phase diagram of Ni-Pt alloys, Phys. Rev. B, 47, 15276, 10.1103/PhysRevB.47.15276
Ruban, 1995, Ground-state properties of ordered, partially ordered, and random Cu-Au and Ni-Pt alloys, Phys. Rev. B, 51, 10.1103/PhysRevB.51.12958
Cyr, 1981, Critical evaluation of thermodynamic properties of mixing for SotM cobalt-platinum alloys between 1000 and 1400K, J. Chem. Eng. Data, 178, 174, 10.1021/je00024a025
Myles, 1968, Thermodynamic properties of solid palladium-copper and platinum-copper alloys, Acta Metall., 16, 485, 10.1016/0001-6160(68)90122-3
Walker, 1970, Thermodynamic properties of solid nickel-platinum alloys, Acta Metall., 18, 1261, 10.1016/0001-6160(70)90156-2