Second Order Monotone Difference Schemes with Approximation on Non-Uniform Grids for Two-Dimensional Quasilinear Parabolic Convection-Diffusion Equations

Vestnik St. Petersburg University, Mathematics - Tập 53 Số 2 - Trang 232-240 - 2020
Le Minh Hieu1, Dang N. H. Thanh2, V. B. Surya Prasath3
1University of Economics, The University of Danang, 550000, Da Nang, Vietnam
2Department of Information Technology, School of Business Information Technology, University of Economics Ho Chi Minh City, 700000, Ho Chi Minh City, Vietnam
3Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 45229, Cincinnati, OH, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

A. A. Samarskii, The Theory of Difference Schemes (Nauka, Moscow, 1989; Marcel Dekker, Basel, 2001).

A. A. Samarskii and A. A. Gulin, Numerical Methods (Nauka, Moscow, 1989) [in Russian].

P. P. Matus, T. K. T. Vo, and F. Gaspar, “Monotone difference schemes for linear parabolic equations with mixed boundary conditions,” Dokl. Nats. Akad. Nauk Belarusi 58 (5), 18–22 (2014).

V. I. Mazhukin, D. A. Malafei, P. P. Matus, and A. A. Samarskii, “Difference schemes on irregular grids for equations of mathematical physics with variable coefficients,” Comput. Math. Math. Phys. 41, 379–391 (2001).

D. A. Malafei, “Efficient monotone difference schemes for multidimensional convection–diffusion problems on nonuniform grids,” Dokl. Nats. Akad. Nauk Belarusi 44 (4), 21–25 (2000).

P. P. Matus, D. Poliakov, and L. M. Hieu, “On the consistent two-side estimates for the solutions of quasilinear convection–diffusion equations and their approximations on nonuniform grids,” J. Comput. Appl. Math. 340, 571–581 (2018). https://doi.org/10.1016/j.cam.2017.09.020

P. P. Matus, L. M. Hieu, and L. G. Volkov, “Maximum principle for difference schemes with varying input data,” Dokl. Nats. Akad. Nauk Belarusi 59 (5), 13–17 (2015).

A. Friedman, Partial Differential Equations of Parabolic Type (Dover, New York, 2013).

A. A. Samarskii, P. N. Vabishchevich, and P. P. Matus, Difference Schemes with Operator Factors (Kluwer, Boston, 2002).

V. B. S. Prasath and J. C. Moreno, “On convergent finite difference schemes for variational–PDE-based image processing,” Comput. Appl. Math. 37, 1562–1580 (2018). https://doi.org/10.1007/s40314-016-0414-9

S. Koide and D. Furihata, “Nonlinear and linear conservative finite difference schemes for regularized long wave equation,” Jpn. J. Ind. Appl. Math. 26, 15 (2009). https://doi.org/10.1007/BF03167544

R. Kalantari and S. Shahmorad, “A stable and convergent finite difference method for fractional Black–Scholes model of American put option pricing,” Comput. Econ. 53, 191–205 (2019). https://doi.org/10.1007/s10614-017-9734-0