Second-Order Enhanced Optimality Conditions and Constraint Qualifications

Kuang Bai1, Yumeng Song2, Zhang Jin3
1Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China
2Department of Mathematics, Southern University of Science and Technology, Shenzhen, China
3Department of Mathematics, National Center for Applied Mathematics Shenzhen, Southern University of Science and Technology, Peng Cheng Laboratory, Shenzhen, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abadie, J.M.: On the Kuhn–Tucker Theorem. Nonlinear Programming (NATO Summer School, Menton, 1964) pp. 19–36 (1967)

Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: Second-order negative-curvature methods for box-constrained and general constrained optimization. Comput. Optim. Appl. 45(2), 209–236 (2010)

Andreani, R., Echagüe, C.E., Schuverdt, M.L.: Constant-rank condition and second-order constraint qualification. J. Optim. Theory Appl. 146(2), 255–266 (2010)

Andreani, R., Haeser, G., Martínez, J.M.: On sequential optimality conditions for smooth constrained optimization. Optimization 60(5), 627–641 (2011)

Andreani, R., Martínez, J.M., Schuverdt, M.L.: On the relation between constant positive linear dependence condition and quasinormality constraint qualification. J. Optim. Theory Appl. 125(2), 473–485 (2005)

Andreani, R., Haeser, G., Schuverdt, M.L., Silva, P.: Two new weak constraint qualifications and applications. SIAM J. Optim. 22(3), 1109–113 (2012)

Andreani, R., Haeser, G., Schuverdt, M.L., Silva, P.: A relaxed constant positive linear dependence constraint qualification and applications. Math. Program. 135(1–2, Ser. A), 255–273 (2012)

Andreani, R., Haeser, G., Ramos, A., Silva, P.: A second-order sequential optimality condition associated to the convergence of optimization algorithms. IMA J. Numer. Anal. 37(4), 1902–1929 (2017)

Andreani, R., Martínez, J.M., Ramos, A., Silva, P.: A cone-continuity constraint qualification and algorithm consequences. SIAM J. Optim. 26(1), 96–110 (2016)

Andreani, R., Martínez, J.M., Schuverdt, M.L.: On second-order optimality conditions for nonlinear programming. Optimization 56(5–6), 529–542 (2007)

Arutyunov, A.: Optimality Conditions: Abnormal and Degenerate Problems. Kluwer Academic Publishers, Dordrecht (2000)

Arutyunov, A.: Second-Order Conditions in Extremal Problems The Abnormal Points. Trans. Am. Math. Soc. 350(11), 4341–4365 (1998)

Auslender, A.: Penalty methods for computing points that satisfy second-order necessary conditions. Math. Program. 17, 229–238 (1979)

Bai, K., Ye, Jane J., Zhang, J.: Directional Quasi-/Pseudo-Normality as Sufficient Conditions for Metric Subregularity. SIAM J. Optim. 29(4), 2625–2649 (2019)

Behling, R., Haeser, G., Ramos, A., Viana, D.S.: On a conjecture in second-order optimality conditions. J. Optim. Theory Appl. 176(3), 625–633 (2018). Extended version: arXiv:1706.07833

Ben-Tal, A.: Second-order and related extremality conditions in nonlinear programming. J. Optim. Theory Appl. 31(2), 143–165 (1980)

Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont, MA (1999)

Bertsekas, D.P., Ozdaglar, A.E.: Pseudonormality and a Lagrange multiplier theory for constrained optimization. J. Optim. Theory Appl. 114(2), 287–343 (2002)

Bertsekas, D.P., Ozdaglar, A.E.: The relation between pseudonormality and quasiregularity in constrained optimization. Optim. Methods Softw. 19(5), 493–506 (2004)

Bertsekas, D.P., Ozdaglar, A.E., Tseng, P.: Enhanced Fritz John conditions for convex programming. SIAM J. Optim. 16(3), 766–797 (2006)

Bertsekas, D.P., Nedic, A., Ozdaglar, A.E.: Convex Analysis and Optimization. Athena Scientific, Belmont, MA (2003)

Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, Berlin (2000)

Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. Springer, New York (2005)

Burke, J.V.: An exact penalization viewpoint of constrained optimization. SIAM J. Control. Optim. 9, 968–998 (1991)

Clarke, F.H.: A new approach to Lagrange multipliers. Math. Oper. Res. 1, 165–174 (1976)

Coleman, T.F., Liu, J., Yuan, W.: A new trust-region algorithm for equality constrained optimization. Comput. Optim. Appl. 21(2), 177–199 (2002)

Dennis, J.E., El-Alem, M., Maciel, M.C.: A global convergence theory for general trust-region-based algorithms for equality constrained optimization. SIAM J. Optim. 7(1), 177–207 (1997)

Di Pillo, G., Lucidi, S., Palagi, L.: Convergence to second-order stationary points of a primal-dual algorithm model for nonlinear programming. Math. Oper. Res. 30(4), 897–915 (2005)

Dubovitskii, A.Y., Milyutin, A.A.: Extremum problems in the presence of restrictions. USSR Comput. Math. Math. Phys. 5(3), 1–80 (1965)

Gfrerer, H., Klatte, D.: Lipschitz and Hölder stability of optimization problems and generalized equations. Math. Program. 158(1–2(Ser. A)), 35–75 (2016)

Gill, P.E., Kungurtsev, V., Robinson, D.P.: A stabilized SQP method: global convergence. IMA J. Numer. Anal. 37(1), 407–443 (2017)

Guignard, M.: Generalized Kuhn–Tucker conditions for mathematical programming problems in a Banach space. SIAM J. Control. 7, 232–241 (1969)

Gould, F.J., Tolle, J.W.: A necessary and sufficient qualification for constrained optimization. SIAM J. Appl. Math. 20, 164–172 (1971)

Hestenes, M.R.: Optimization Theory: The Finite Dimensional Case. Krieger Publishing, Malabar, FL (1975)

Izmailov, A., Solodov, M.: Error bounds for 2-regular mappings with Lipschitzian derivatives and their applications. Math. Program. 89, 413–435 (2001)

Janin, R.: Directional derivative of the marginal function in nonlinear programming. Math. Program. Stud. No. 21, 110–126 (1984)

John, F.: Extremum Problems with Inequalities as Subsidiary Conditions. Traces and Emergence of Nonlinear Programming, pp. 198–215. Springer, Basel (2014)

Karush, W.:Minima of Functions of Several Variables with Inequalities as Side Conditions. Master’s thesis, University of Chicago (1939)

Kruger, A.Y., López, M.A., Yang, X., Zhu, J.: Hölder error bounds and Hölder calmness with applications to convex semi-infinite optimization. Set-Valued Var. Anal. 27(4), 995–1023 (2019)

Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, pp. 481–492 (1951)

Kummer, B.: Inclusions in general spaces: Hölder stability, solution schemes and Ekelands principle. J. Math. Anal. Appl. 358, 327–344 (2009)

Levitin, E.S., Milyutin, A.A., Osmolovskii, N.P.: Conditions of high order for a local minimum in problems with constraints. Russ. Math. Surv. 33, 97–168 (1978)

Mangasarian, O.L., Fromovitz, S.: The Fritz John necessary optimality conditions in the presence of equality and inequality constraints. J. Math. Anal. Appl. 17, 37–47 (1967)

Meng, K.W., Yang, X.Q.: Optimality conditions via exact penalty functions. SIAM J. Optim. 20(6), 3208–3231 (2010)

Meng, K.W., Yang, X.Q.: First- and second-order necessary conditions via exact penalty functions. J. Optim. Theory Appl. 165(3), 720–752 (2015)

Minchenko, L., Turakanov, A.: On error bounds for quasinormal programs. J. Optim. Theory Appl. 148(3), 571–579 (2011)

Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I. Basic Theory. Springer, Berlin (2006)

Mordukhovich, B.S.: Variational Analysis and Applications. Springer, Cham (2018)

Rockafellar, R.T.: Lagrange multipliers and optimality. SIAM Rev. 35(2), 183–238 (1993)

Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (1998)

Yang, X.Q., Meng, Z.Q.: Lagrange multipliers and calmness conditions of order $$p$$. Math. Oper. Res. 32(1), 95–101 (2007)

Ye, Jane J., Ye, X.Y.: Necessary optimality conditions for optimization problems with variational inequality constraints. Math. Oper. Res. 22(4), 977–997 (1997)

Ye, Jane J., Zhang, J.: Enhanced Karush–Kuhn–Tucker condition and weaker constraint qualification. Math. Program. 139(1–2(Ser. B)), 353–381 (2013)