Second-Order Enhanced Optimality Conditions and Constraint Qualifications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abadie, J.M.: On the Kuhn–Tucker Theorem. Nonlinear Programming (NATO Summer School, Menton, 1964) pp. 19–36 (1967)
Andreani, R., Birgin, E.G., Martínez, J.M., Schuverdt, M.L.: Second-order negative-curvature methods for box-constrained and general constrained optimization. Comput. Optim. Appl. 45(2), 209–236 (2010)
Andreani, R., Echagüe, C.E., Schuverdt, M.L.: Constant-rank condition and second-order constraint qualification. J. Optim. Theory Appl. 146(2), 255–266 (2010)
Andreani, R., Haeser, G., Martínez, J.M.: On sequential optimality conditions for smooth constrained optimization. Optimization 60(5), 627–641 (2011)
Andreani, R., Martínez, J.M., Schuverdt, M.L.: On the relation between constant positive linear dependence condition and quasinormality constraint qualification. J. Optim. Theory Appl. 125(2), 473–485 (2005)
Andreani, R., Haeser, G., Schuverdt, M.L., Silva, P.: Two new weak constraint qualifications and applications. SIAM J. Optim. 22(3), 1109–113 (2012)
Andreani, R., Haeser, G., Schuverdt, M.L., Silva, P.: A relaxed constant positive linear dependence constraint qualification and applications. Math. Program. 135(1–2, Ser. A), 255–273 (2012)
Andreani, R., Haeser, G., Ramos, A., Silva, P.: A second-order sequential optimality condition associated to the convergence of optimization algorithms. IMA J. Numer. Anal. 37(4), 1902–1929 (2017)
Andreani, R., Martínez, J.M., Ramos, A., Silva, P.: A cone-continuity constraint qualification and algorithm consequences. SIAM J. Optim. 26(1), 96–110 (2016)
Andreani, R., Martínez, J.M., Schuverdt, M.L.: On second-order optimality conditions for nonlinear programming. Optimization 56(5–6), 529–542 (2007)
Arutyunov, A.: Optimality Conditions: Abnormal and Degenerate Problems. Kluwer Academic Publishers, Dordrecht (2000)
Arutyunov, A.: Second-Order Conditions in Extremal Problems The Abnormal Points. Trans. Am. Math. Soc. 350(11), 4341–4365 (1998)
Auslender, A.: Penalty methods for computing points that satisfy second-order necessary conditions. Math. Program. 17, 229–238 (1979)
Bai, K., Ye, Jane J., Zhang, J.: Directional Quasi-/Pseudo-Normality as Sufficient Conditions for Metric Subregularity. SIAM J. Optim. 29(4), 2625–2649 (2019)
Behling, R., Haeser, G., Ramos, A., Viana, D.S.: On a conjecture in second-order optimality conditions. J. Optim. Theory Appl. 176(3), 625–633 (2018). Extended version: arXiv:1706.07833
Ben-Tal, A.: Second-order and related extremality conditions in nonlinear programming. J. Optim. Theory Appl. 31(2), 143–165 (1980)
Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont, MA (1999)
Bertsekas, D.P., Ozdaglar, A.E.: Pseudonormality and a Lagrange multiplier theory for constrained optimization. J. Optim. Theory Appl. 114(2), 287–343 (2002)
Bertsekas, D.P., Ozdaglar, A.E.: The relation between pseudonormality and quasiregularity in constrained optimization. Optim. Methods Softw. 19(5), 493–506 (2004)
Bertsekas, D.P., Ozdaglar, A.E., Tseng, P.: Enhanced Fritz John conditions for convex programming. SIAM J. Optim. 16(3), 766–797 (2006)
Bertsekas, D.P., Nedic, A., Ozdaglar, A.E.: Convex Analysis and Optimization. Athena Scientific, Belmont, MA (2003)
Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. Springer, New York (2005)
Burke, J.V.: An exact penalization viewpoint of constrained optimization. SIAM J. Control. Optim. 9, 968–998 (1991)
Coleman, T.F., Liu, J., Yuan, W.: A new trust-region algorithm for equality constrained optimization. Comput. Optim. Appl. 21(2), 177–199 (2002)
Dennis, J.E., El-Alem, M., Maciel, M.C.: A global convergence theory for general trust-region-based algorithms for equality constrained optimization. SIAM J. Optim. 7(1), 177–207 (1997)
Di Pillo, G., Lucidi, S., Palagi, L.: Convergence to second-order stationary points of a primal-dual algorithm model for nonlinear programming. Math. Oper. Res. 30(4), 897–915 (2005)
Dubovitskii, A.Y., Milyutin, A.A.: Extremum problems in the presence of restrictions. USSR Comput. Math. Math. Phys. 5(3), 1–80 (1965)
Gfrerer, H., Klatte, D.: Lipschitz and Hölder stability of optimization problems and generalized equations. Math. Program. 158(1–2(Ser. A)), 35–75 (2016)
Gill, P.E., Kungurtsev, V., Robinson, D.P.: A stabilized SQP method: global convergence. IMA J. Numer. Anal. 37(1), 407–443 (2017)
Guignard, M.: Generalized Kuhn–Tucker conditions for mathematical programming problems in a Banach space. SIAM J. Control. 7, 232–241 (1969)
Gould, F.J., Tolle, J.W.: A necessary and sufficient qualification for constrained optimization. SIAM J. Appl. Math. 20, 164–172 (1971)
Hestenes, M.R.: Optimization Theory: The Finite Dimensional Case. Krieger Publishing, Malabar, FL (1975)
Izmailov, A., Solodov, M.: Error bounds for 2-regular mappings with Lipschitzian derivatives and their applications. Math. Program. 89, 413–435 (2001)
Janin, R.: Directional derivative of the marginal function in nonlinear programming. Math. Program. Stud. No. 21, 110–126 (1984)
John, F.: Extremum Problems with Inequalities as Subsidiary Conditions. Traces and Emergence of Nonlinear Programming, pp. 198–215. Springer, Basel (2014)
Karush, W.:Minima of Functions of Several Variables with Inequalities as Side Conditions. Master’s thesis, University of Chicago (1939)
Kruger, A.Y., López, M.A., Yang, X., Zhu, J.: Hölder error bounds and Hölder calmness with applications to convex semi-infinite optimization. Set-Valued Var. Anal. 27(4), 995–1023 (2019)
Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, pp. 481–492 (1951)
Kummer, B.: Inclusions in general spaces: Hölder stability, solution schemes and Ekelands principle. J. Math. Anal. Appl. 358, 327–344 (2009)
Levitin, E.S., Milyutin, A.A., Osmolovskii, N.P.: Conditions of high order for a local minimum in problems with constraints. Russ. Math. Surv. 33, 97–168 (1978)
Mangasarian, O.L., Fromovitz, S.: The Fritz John necessary optimality conditions in the presence of equality and inequality constraints. J. Math. Anal. Appl. 17, 37–47 (1967)
Meng, K.W., Yang, X.Q.: Optimality conditions via exact penalty functions. SIAM J. Optim. 20(6), 3208–3231 (2010)
Meng, K.W., Yang, X.Q.: First- and second-order necessary conditions via exact penalty functions. J. Optim. Theory Appl. 165(3), 720–752 (2015)
Minchenko, L., Turakanov, A.: On error bounds for quasinormal programs. J. Optim. Theory Appl. 148(3), 571–579 (2011)
Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I. Basic Theory. Springer, Berlin (2006)
Yang, X.Q., Meng, Z.Q.: Lagrange multipliers and calmness conditions of order $$p$$. Math. Oper. Res. 32(1), 95–101 (2007)
Ye, Jane J., Ye, X.Y.: Necessary optimality conditions for optimization problems with variational inequality constraints. Math. Oper. Res. 22(4), 977–997 (1997)
Ye, Jane J., Zhang, J.: Enhanced Karush–Kuhn–Tucker condition and weaker constraint qualification. Math. Program. 139(1–2(Ser. B)), 353–381 (2013)