Second Hankel Determinant of Logarithmic Coefficients of Convex and Starlike Functions of Order Alpha
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ali, M.F., Vasudevarao, A.: On logarithmic coefficients of some close-to-convex functions. Proc. Am. Math. Soc. 146, 1131–1142 (2018)
Ali, M.F., Vasudevarao, A., Thomas, D.K.: On the third logarithmic coefficients of close-to-convex functions. In: Lecko, A. (ed.) Current Research in Mathematical and Computer Sciences II, pp. 271–278. UWM, Olsztyn (2018)
Carathéodory, C.: Über den Variabilitatsbereich der Koeffizienten von Potenzreihen, die gegebene werte nicht annehmen. Math. Ann. 64, 95–115 (1907)
Cho, N.E., Kowalczyk, B., Kwon, O.S., Lecko, A., Sim, Y.J.: The bound of the Hankel detrminant for strongly starlike functions of order alpha. J. Math. Ineq. 11(2), 429–439 (2017)
Cho, N.E., Kowalczyk, B., Lecko, A.: Sharp bounds of some coefficient functionals over the class of functions convex in the direction of the imaginary axis. Bull. Aust. Math. Soc. 100, 86–96 (2019)
Cho, N.E., Kowalczyk, B., Kwon, O.S., Lecko, A., Sim, Y.J.: On the third logarithmic coefficient in some subclasses of close-to-convex functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. (Esp.) 114, Art: 52, 1–14 (2020)
Choi, J.H., Kim, Y.C., Sugawa, T.: A general approach to the Fekete–Szegö problem. J. Math. Soc. Jpn. 59, 707–727 (2007)
Duren, P.T.: Univalent Functions. Springer, New York (1983)
Girela, D.: Logarithmic coefficients of univalent functions. Ann. Acad. Sci. Fenn. 25, 337–350 (2000)
Goodman, A.W.: Univalent Functions. Mariner, Tampa (1983)
Kowalczyk, B., Lecko, A., Sim, Y.J.: The sharp bound for the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 97, 435–445 (2018)
Kowalczyk, B., Lecko, A.: Second Hankel determinant of logarithmic coefficients of convex and starlike functions. Bull. Aust. Math. Soc. (2021). https://doi.org/10.1017/S0004972721000836
Kumar, U.P., Vasudevarao, A.: Logarithmic coefficients for certain subclasses of close-to-convex functions. Monats. Math. 187(3), 543–563 (2018)
Libera, R.J., Zlotkiewicz, E.J.: Early coefficients of the inverse of a regular convex function. Proc. Am. Math. Soc. 85(2), 225–230 (1982)
Libera, R.J., Zlotkiewicz, E.J.: Coefficient bounds for the inverse of a function with derivatives in $${\cal{P}}$$. Proc. Am. Math. Soc. 87(2), 251–257 (1983)
Milin, I.M.: Univalent Functions and Orthonormal Systems, Izdat. "Nauka", Moscow (1971) (in Russian)
English transl., American Mathematical Society, Providence (1977)
Ohno, R., Sugawa, T.: Coefficient estimates of analytic endomorphisms of the unit disk fixing a point with applications to concave functions. Kyoto J. Math. 58(2), 227–241 (2018)
Pommerenke, C.: Univalent Functions. Vandenhoeck & Ruprecht, Göttingen (1975)
Thomas, D.K.: On logarithmic coefficients of close to convex functions. Proc. Am. Math. Soc. 144, 1681–1687 (2016)
Vasudevarao, A., Thomas, D.K.: The logarithmic coefficients of univalent functions—an overview. In: Lecko, A. (ed.) Current Research in Mathematical and Computer Sciences II, pp. 257–269. Olsztyn, UWM (2018)