Second Hankel Determinant of Logarithmic Coefficients of Convex and Starlike Functions of Order Alpha

Bulletin of the Malaysian Mathematical Sciences Society - Tập 45 Số 2 - Trang 727-740 - 2022
Bogumiła Kowalczyk1, Adam Lecko1
1Department of Complex Analysis, Faculty of Mathematics and Computer Science, University of Warmia and Mazury in Olsztyn, ul. Słoneczna 54, 10-710, Olsztyn, Poland

Tóm tắt

AbstractIn the present paper, we found sharp bounds of the second Hankel determinant of logarithmic coefficients of starlike and convex functions of order $$\alpha $$ α .

Từ khóa


Tài liệu tham khảo

Ali, M.F., Vasudevarao, A.: On logarithmic coefficients of some close-to-convex functions. Proc. Am. Math. Soc. 146, 1131–1142 (2018)

Ali, M.F., Vasudevarao, A., Thomas, D.K.: On the third logarithmic coefficients of close-to-convex functions. In: Lecko, A. (ed.) Current Research in Mathematical and Computer Sciences II, pp. 271–278. UWM, Olsztyn (2018)

Carathéodory, C.: Über den Variabilitatsbereich der Koeffizienten von Potenzreihen, die gegebene werte nicht annehmen. Math. Ann. 64, 95–115 (1907)

Cho, N.E., Kowalczyk, B., Kwon, O.S., Lecko, A., Sim, Y.J.: The bound of the Hankel detrminant for strongly starlike functions of order alpha. J. Math. Ineq. 11(2), 429–439 (2017)

Cho, N.E., Kowalczyk, B., Lecko, A.: Sharp bounds of some coefficient functionals over the class of functions convex in the direction of the imaginary axis. Bull. Aust. Math. Soc. 100, 86–96 (2019)

Cho, N.E., Kowalczyk, B., Kwon, O.S., Lecko, A., Sim, Y.J.: On the third logarithmic coefficient in some subclasses of close-to-convex functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. (Esp.) 114, Art: 52, 1–14 (2020)

Choi, J.H., Kim, Y.C., Sugawa, T.: A general approach to the Fekete–Szegö problem. J. Math. Soc. Jpn. 59, 707–727 (2007)

Duren, P.T.: Univalent Functions. Springer, New York (1983)

Girela, D.: Logarithmic coefficients of univalent functions. Ann. Acad. Sci. Fenn. 25, 337–350 (2000)

Goodman, A.W.: Univalent Functions. Mariner, Tampa (1983)

Kowalczyk, B., Lecko, A., Sim, Y.J.: The sharp bound for the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 97, 435–445 (2018)

Kowalczyk, B., Lecko, A.: Second Hankel determinant of logarithmic coefficients of convex and starlike functions. Bull. Aust. Math. Soc. (2021). https://doi.org/10.1017/S0004972721000836

Kumar, U.P., Vasudevarao, A.: Logarithmic coefficients for certain subclasses of close-to-convex functions. Monats. Math. 187(3), 543–563 (2018)

Libera, R.J., Zlotkiewicz, E.J.: Early coefficients of the inverse of a regular convex function. Proc. Am. Math. Soc. 85(2), 225–230 (1982)

Libera, R.J., Zlotkiewicz, E.J.: Coefficient bounds for the inverse of a function with derivatives in $${\cal{P}}$$. Proc. Am. Math. Soc. 87(2), 251–257 (1983)

Milin, I.M.: Univalent Functions and Orthonormal Systems, Izdat. "Nauka", Moscow (1971) (in Russian)

English transl., American Mathematical Society, Providence (1977)

Ohno, R., Sugawa, T.: Coefficient estimates of analytic endomorphisms of the unit disk fixing a point with applications to concave functions. Kyoto J. Math. 58(2), 227–241 (2018)

Pommerenke, C.: Univalent Functions. Vandenhoeck & Ruprecht, Göttingen (1975)

Robertson, M.S.: On the theory of univalent functions. Ann. Math. 37, 374–408 (1936)

Thomas, D.K.: On logarithmic coefficients of close to convex functions. Proc. Am. Math. Soc. 144, 1681–1687 (2016)

Vasudevarao, A., Thomas, D.K.: The logarithmic coefficients of univalent functions—an overview. In: Lecko, A. (ed.) Current Research in Mathematical and Computer Sciences II, pp. 257–269. Olsztyn, UWM (2018)