Seasonal nutrient transfers by foliar resorption, leaching, and litter fall in a northern hardwood forest at Lake Clair Watershed, Quebec, Canada

Canadian Journal of Forest Research - Tập 31 Số 2 - Trang 333-344 - 2001
Louis Duchesne, Rock Ouimet, Claude Camiré, Daniel Houle

Tóm tắt

A descriptive temporal model was used to evaluate the flow of macronutrients (N, P, K, Ca, and Mg) between the forest canopy and incident precipitation for the Lake Clair Watershed (LCW) located in the northern hardwood forest region of Quebec, Canada. The model also quantified the resorption mechanism. Wet precipitation, throughfall, foliage, and litter fall data for 1997 were used to quantify the following: (1) dry deposition intercepted by forest cover (0.38, 0.07, 0.07, and 0.03 kg·ha–1 for Ca, K, Mg, and P, respectively); (2) leaching from foliage (1.81, 6.46, 0.48, and 0.13 kg·ha–1 for Ca, K, Mg, and P, respectively); and (3) foliar resorption (N = 65%, P = 65%, K = 42%, Mg = 30%, and Ca = 10%). Foliar N, P, and K pools increased after bud break and remained constant until mid-September when they decreased rapidly. The foliar Ca pool increased until leaf fall, while the foliar Mg pool reached a maximum in early July and decreased slowly until leaf senescence. Phosphorus, K, Ca, and Mg were leached from the canopy whereas N from wet precipitation was retained by the canopy. The relatively high Mg and Ca resorption rates are consistent with the low soil Ca and Mg availability reported at the LCW. Consideration of leaching and dry deposition, as well as the temporal dimension, demonstrated the importance of each of these parameters for increasing the accuracy of the foliar nutrient resorption estimates.

Từ khóa


Tài liệu tham khảo

Baker J.B., 1977, Soc. Am. J., 41, 632, 10.2136/sssaj1977.03615995004100030043x

Baker T.G., 1985, For. Ecol. Manage., 13, 41, 10.1016/0378-1127(85)90004-0

Beier C., 1991, J. Environ. Qual., 20, 460, 10.2134/jeq1991.00472425002000020020x

Chapin F.S., 1980, Rev. Ecol. Syst., 11, 233, 10.1146/annurev.es.11.110180.001313

Chapin F.S., 1983, Ecology, 64, 376, 10.2307/1937083

Del Arco J.M., 1991, Ecology, 72, 701, 10.2307/2937209

Dillon P.J., 1990, Biogeochemistry, 11, 23, 10.1007/BF00000850

Ellis R.C., 1975, Can. J. For. Res., 5, 310, 10.1139/x75-042

Escudero A., 1987, Oikos, 49, 11, 10.2307/3565549

Escudero A., 1991, Oecologia, 90, 80, 10.1007/BF00317812

Escudero A., 1992, Vegetatio, 99, 225, 10.1007/BF00118229

Fife D.N., 1982, Ann. Bot., 50, 817, 10.1093/oxfordjournals.aob.a086425

Gholz H.L., 1985, Ecology, 66, 647, 10.2307/1940526

Gosz J.R., 1980, Ecology, 61, 515, 10.2307/1937417

Gosz J.R., 1983, Bioscience, 33, 23, 10.2307/1309240

Helmisaari H.S., 1992, For. Ecol. Manage., 51, 347, 10.1016/0378-1127(92)90334-6

Helmisaari H.S., 1992, Tree Physiol., 10, 45, 10.1093/treephys/10.1.45

Helmisaari H.S., 1995, Plant Soil, 168, 327, 10.1007/BF00029345

Houle D., 1997, Can. J. For. Res., 27, 1813, 10.1139/x97-143

Houle D., 1999, Can. J. For. Res., 29, 1944, 10.1139/x99-212

Houle D., 1999, Can. J. For. Res., 29, 1935, 10.1139/x99-146

Hultberg H., 1995, Water Air Soil Pollut., 85, 2235, 10.1007/BF01186166

Jonasson S., 1990, Oikos, 56, 121, 10.2307/3566095

Killingbeck K.T., 1985, Ecology, 66, 283, 10.2307/1941329

Killingbeck K.T., 1986, Oikos, 46, 263, 10.2307/3565477

Killingbeck K.T., 1990, Can. J. For. Res., 20, 1156, 10.1139/x90-154

Lodhiyal L.S., 1995, Ann. Bot., 76, 201, 10.1006/anbo.1995.1088

Miller R.B., 1963, N.Z. J. Soil. Sci., 6, 378

Moore J.-D., 2000, Can. J. For. Res., 30, 725, 10.1139/x00-009

Nambiar E.K.S., 1987, Ann. Bot., 60, 147, 10.1093/oxfordjournals.aob.a087431

Ostman N.L., 1982, Can. J. For. Res., 12, 40, 10.1139/x82-006

Parker G.G., 1983, Adv. Ecol. Res., 13, 57, 10.1016/S0065-2504(08)60108-7

Potter C.S., 1987, Oecologia, 73, 268, 10.1007/BF00377517

Ryan D.F., 1981, Bioscience, 32, 29, 10.2307/1308751

Sampson A.W., 1935, Plant Physiol., 10, 739, 10.1104/pp.10.4.739

Staaf H., 1982, Oecol. Plant., 3, 161

Stachurski A., 1975, Ekol. Pol., 23, 637