Phân bố theo mùa và sự tiến hóa động học của kháng sinh, cũng như đánh giá tiềm năng chọn lọc kháng thuốc và rủi ro sinh thái học tại nhà máy xử lý nước thải ở Jinan, Trung Quốc

Springer Science and Business Media LLC - Tập 30 - Trang 44505-44517 - 2023
Hui Zhang1, Huiyun Zou1, Ling Zhao1, Xuewen Li1
1Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China

Tóm tắt

Sự phân bố theo mùa và sự tiến hóa động học của kháng sinh trong nước thải từ các khu vực xử lý chính và trong bùn, cùng với tiềm năng chọn lọc kháng thuốc và rủi ro sinh thái học của chúng đã được nghiên cứu tại một nhà máy xử lý nước thải đô thị ở Jinan, miền Đông Trung Quốc. Mười loại kháng sinh được chọn lọc và tất cả đều được phát hiện trong mẫu nước thải và bùn, trong đó fluoroquinolones cho thấy nồng độ và tần suất phát hiện cao nhất. Có sự biến đổi theo mùa về nồng độ kháng sinh trong nước vào, nước ra và bùn, với giá trị cao nhất vào mùa đông trong hầu hết các trường hợp. Sự tiến hóa động học của kháng sinh trong quá trình xử lý khác nhau theo mùa. Hiệu quả loại bỏ kháng sinh là không hoàn hảo, dao động từ -40,47 đến 100%. Phân tích cân bằng khối lượng cho thấy sulfonamides, roxithromycin, và metronidazole chủ yếu được loại bỏ thông qua quy trình sinh học, trong khi fluoroquinolones, doxycycline, và chloramphenicol được loại bỏ qua quá trình hấp phụ bùn. Levofloxacin, cùng với hỗn hợp 10 loại kháng sinh từ nước thải ra, có thể gây ra rủi ro ecotoxicological thấp cho Daphnia trong các nguồn nước tiếp nhận. Thêm vào đó, levofloxacin và ciprofloxacin trong nước thải ra, cũng như ciprofloxacin và metronidazole trong bùn có thể thúc đẩy lựa chọn vi khuẩn kháng thuốc trong môi trường.

Từ khóa

#kháng sinh #xử lý nước thải #ecotoxicology #vi khuẩn kháng thuốc #phân bố theo mùa #tiến hóa động học

Tài liệu tham khảo

Al-Maadheed S, Goktepe I, Latiff ABA, Shomar B (2019) Antibiotics in hospital effluent and domestic wastewater treatment plants in Doha, Qatar. J Water Process Eng 28:60–68. https://doi.org/10.1016/j.jwpe.2019.01.005 An J, Chen HW, Wei SH, Gu J (2015) Antibiotic contamination in animal manure, soil, and sewage sludge in Shenyang, northeast China. Environ Earth Sci 74(6):5077–5086. https://doi.org/10.1007/s12665-015-4528-y Anh HQ, Le TPQ, Da Le N, Lu XX, Duong TT, Garnier J et al (2021) Antibiotics in surface water of East and Southeast Asian countries: A focused review on contamination status, pollution sources, potential risks, and future perspectives. Sci Total Environ 764:16. https://doi.org/10.1016/j.scitotenv.2020.142865 Backhaus T, Faust M (2012) Predictive Environmental Risk Assessment of Chemical Mixtures: A Conceptual Framework. Environ Sci Technol 46(5):2564–2573. https://doi.org/10.1021/es2034125 Batt AL, Kim S, Aga DS (2007) Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations. Chemosphere 68(3):428–435. https://doi.org/10.1016/j.chemosphere.2007.01.008 Behera SK, Kim HW, Oh JE, Park HS (2011) Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. Sci Total Environ 409(20):4351–4360. https://doi.org/10.1016/j.scitotenv.2011.07.015 Bengtsson-Palme J, Larsson DGJ (2016) Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environ Int 86:140–149. https://doi.org/10.1016/j.envint.2015.10.015 Blair B, Nikolaus A, Hedman C, Klaper R, Grundl T (2015) Evaluating the degradation, sorption, and negative mass balances of pharmaceuticals and personal care products during wastewater treatment. Chemosphere 134:395–401. https://doi.org/10.1016/j.chemosphere.2015.04.078 Botero-Coy AM, Martínez-Pachón D, Boix C, Rincón R, Castillo N, Arias-Marín L et al (2018) An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater. Sci Total Environ 642(nov.15):842–853 Carter DL, Docherty KM, Gill SA, Baker K, Teachout J, Vonhof MJ (2018) Antibiotic resistant bacteria are widespread in songbirds across rural and urban environments. Sci Total Environ 627:1234–1241. https://doi.org/10.1016/j.scitotenv.2018.01.343 Castiglioni S, Bagnati R, Fanelli R, Pomati F, Calamari D, Zuccato E (2006) Removal of pharmaceuticals in sewage treatment plants in Italy. Environ Sci Technol 40(1):357–363. https://doi.org/10.1021/es050991m Chaturvedi P, Shukla P, Giri BS, Chowdhary P, Chandra R, Gupta P et al (2021) Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: A review on emerging contaminants. Environ Res 194:17. https://doi.org/10.1016/j.envres.2020.110664 Cheng DM, Liu XH, Wang L, Gong WW, Liu GN, Fu WJ et al (2014) Seasonal variation and sediment-water exchange of antibiotics in a shallower large lake in North China. Sci Total Environ 476:266–275. https://doi.org/10.1016/j.scitotenv.2014.01.010 Coleman BL, Salvadori MI, McGeer AJ, Sibley KA, Neumann NF, Bondy SJ et al (2012) The role of drinking water in the transmission of antimicrobial-resistant E. coli. Epidemiol Infect 140(4):633–642. https://doi.org/10.1017/s0950268811001038 Danner MC, Robertson A, Behrends V, Reiss J (2019) Antibiotic pollution in surface fresh waters: Occurrence and effects. Sci Total Environ 664:793–804. https://doi.org/10.1016/j.scitotenv.2019.01.406 Deng Y, Li B, Zhang T (2018) Bacteria That Make a Meal of Sulfonamide Antibiotics: Blind Spots and Emerging Opportunities. Environ Sci Technol 52(7):3854–3868. https://doi.org/10.1021/acs.est.7b06026 Ebert I, Bachmann J, Kuhnen U, Kuster A, Kussatz C, Maletzki D et al (2011) Toxicity of the fluoroquinolone antibiotics enrofloxacin and ciprofloxacin to photoautotrophic aquatic organisms. Environ Toxicol Chem 30(12):2786–2792. https://doi.org/10.1002/etc.678 EMEA (2006) Guideline on the environmental risk assessment of medicinal products for human use. The European agency for the evaluation of medicinal products: Committee for medicinal products for human use, EMEA/CHMP/SWP/4447/00. Gao LH, Shi YL, Li WH, Niu HY, Liu JM, Cai YQ (2012) Occurrence of antibiotics in eight sewage treatment plants in Beijing, China. Chemosphere 86(6):665–671. https://doi.org/10.1016/j.chemosphere.2011.11.019 Garcia J, Garcia-Galan MJ, Day JW, Boopathy R, White JR, Wallace S et al (2020) A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) in the environment: Increasing removal with wetlands and reducing environmental impacts. Biores Technol 307:10. https://doi.org/10.1016/j.biortech.2020.123228 Gobel A, Thomsen A, McArdell CS, Joss A, Giger W (2005) Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environ Sci Technol 39(11):3981–3989. https://doi.org/10.1021/es048550a Gobel A, McArdell CS, Joss A, Siegrist H, Giger W (2007) Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Sci Total Environ 372(2–3):361–371. https://doi.org/10.1016/j.scitotenv.2006.07.039 Golet EM, Alder AC, Giger W (2002) Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt Valley Watershed, Switzerland. Environ Sci Technol 36(17):3645–3651. https://doi.org/10.1021/es0256212 Golet EM, Xifra I, Siegrist H, Alder AC, Giger W (2003) Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environ Sci Technol 37(15):3243–3249. https://doi.org/10.1021/es0264448 Hanna N, Sun P, Sun Q, Li XW, Yang XW, Ji X et al (2018) Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: Its potential for resistance development and ecological and human risk. Environ Int 114:131–142. https://doi.org/10.1016/j.envint.2018.02.003 Hernando MD, Mezcua M, Fernandez-Alba AR, Barcelo D (2006) Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69(2):334–342. https://doi.org/10.1016/j.talanta.2005.09.037 Hu J, Zhou J, Zhou SQ, Wu P, Tsang YF (2018) Occurrence and fate of antibiotics in a wastewater treatment plant and their biological effects on receiving waters in Guizhou. Process Saf Environ Prot 113:483–490. https://doi.org/10.1016/j.psep.2017.12.003 Jelic A, Gros M, Ginebreda A, Cespedes-Sanchez R, Ventura F, Petrovic M et al (2011) Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res 45(3):1165–1176. https://doi.org/10.1016/j.watres.2010.11.010 Jia A, Wan Y, Xiao Y, Hu JY (2012) Occurrence and fate of quinolone and fluoroquinolone antibiotics in a municipal sewage treatment plant. Water Res 46(2):387–394. https://doi.org/10.1016/j.watres.2011.10.055 Johnson JR, Kuskowski MA, Smith K, O’Bryan TT, Tatini S (2005) Antimicrobial-resistant and extraintestinal pathogenic Escherichia coli in retail foods. J Infect Dis 191(7):1040–1049. https://doi.org/10.1086/428451 Karthikeyan KG, Meyer MT (2006) Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Sci Total Environ 361(1–3):196–207. https://doi.org/10.1016/j.scitotenv.2005.06.030 Kasprzyk-Hordern B (2010) Pharmacologically active compounds in the environment and their chirality. Chem Soc Rev 39(11):4466–4503. https://doi.org/10.1039/c000408c Kim S, Eichhorn P, Jensen JN, Weber AS, Aga DS (2005) Removal of antibiotics in wastewater: Effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process. Environ Sci Technol 39(15):5816–5823. https://doi.org/10.1021/es050006u Klein EY, Van Boeckel TP, Martinez EM, Pant S, Gandra S, Levin SA et al (2018) Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci USA 115(15):E3463–E3470. https://doi.org/10.1073/pnas.1717295115 Kortesmaki E, Ostman JR, Meierjohann A, Brozinski JM, Eklund P, Kronberg L (2020) Occurrence of Antibiotics in Influent and Effluent from 3 Major Wastewater-Treatment Plants in Finland. Environ Toxicol Chem 39(9):1774–1789. https://doi.org/10.1002/etc.4805 Kumar RR, Lee JT, Cho JY (2012) Fate, Occurrence, and Toxicity of Veterinary Antibiotics in Environment. J Korean Soc Appl Biol Chem 55(6):701–709. https://doi.org/10.1007/s13765-012-2220-4 Kumar M, Jaiswal S, Sodhi KK, Shree P, Singh DK, Agrawal PK et al (2019) Antibiotics bioremediation: Perspectives on its ecotoxicity and resistance. Environ Int 124:448–461. https://doi.org/10.1016/j.envint.2018.12.065 Kümmerer K (2010) Pharmaceuticals in the environment. Ann Rev Environ Resour 35(1):57–75. https://doi.org/10.1146/annurev-environ-052809-161223 Kuster M, de Alda MJ, Hernando MD, Petrovic M, Martin-Alonso J, Barcelo D (2008) Analysis and occurrence of pharmaceuticals, estrogens, progestogens and polar pesticides in sewage treatment plant effluents, river water and drinking water in the Llobregat river basin (Barcelona, Spain). J Hydrol 358(1–2):112–123. https://doi.org/10.1016/j.jhydrol.2008.05.030 Lacey C, Basha S, Morrissey A, Tobin JM (2012) Occurrence of pharmaceutical compounds in wastewater process streams in Dublin, Ireland. Environ Monit Assess 184(2):1049–1062. https://doi.org/10.1007/s10661-011-2020-z Le TH, Truong T, Tran LT, Nguyen DH, Pham TPT, & Ng C (2022) Antibiotic resistance in the aquatic environments: the need for an interdisciplinary approach. Int J Environ Sci Technol, 14. https://doi.org/10.1007/s13762-022-04194-9 Leonard AFC, Zhang LH, Balfour A, Garside R, Gaze WH (2015) Human recreational exposure to antibiotic resistant bacteria in coastal bathing waters. Environ Int 82:92–100. https://doi.org/10.1016/j.envint.2015.02.013 Leung HW, Minh TB, Murphy MB, Lam JCW, So MK, Martin M et al (2012) Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China. Environ Int 42:1–9. https://doi.org/10.1016/j.envint.2011.03.004 Li WH, Shi YL, Gao LH, Liu JM, Cai YQ (2013) Occurrence and removal of antibiotics in a municipal wastewater reclamation plant in Beijing, China. Chemosphere 92(4):435–444. https://doi.org/10.1016/j.chemosphere.2013.01.040 Lindberg RH, Wennberg P, Johansson MI, Tysklind M, Andersson BAV (2005) Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden. Environ Sci Technol 39(10):3421–3429. https://doi.org/10.1021/es048143z Liu HQ, Lam JCW, Li WW, Yu HQ, Lam PKS (2017a) Spatial distribution and removal performance of pharmaceuticals in municipal wastewater treatment plants in China. Sci Total Environ 586:1162–1169. https://doi.org/10.1016/j.scitotenv.2017.02.107 Liu Y, Chen S, Zhang J, Li XW, Gao BY (2017b) Stimulation effects of ciprofloxacin and sulphamethoxazole in Microcystis aeruginosa and isobaric tag for relative and absolute quantitation-based screening of antibiotic targets. Mol Ecol 26(2):689–701. https://doi.org/10.1111/mec.13934 Liu YH, Chen Y, Feng MJ, Chen JQ, Shen WT, Zhang SH (2021) Occurrence of antibiotics and antibiotic resistance genes and their correlations in river-type drinking water source, China. Environ Sci Pollut Res 28(31):42339–42352. https://doi.org/10.1007/s11356-021-13637-8 Luo Y, Mao DQ, Rysz M, Zhou DX, Zhang HJ, Xu L et al (2010) Trends in Antibiotic Resistance Genes Occurrence in the Haihe River, China. Environ Sci Technol 44(19):7220–7225. https://doi.org/10.1021/es100233w Luo F, Pan G, Li L, Zhang J, Wang N, Jiao S et al (2017) The distribution characteristics and potential risk of tetracycline, oxytetracycline and their corresponding genes pollution in sediment of Hongze Lake. J Agro-Environ Sci 36(2):369–375 (Retrieved from <Go to ISI>://CSCD:5922900) Michael I, Rizzo L, McArdell CS, Manaia CM, Merlin C, Schwartz T et al (2013) Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Res 47(3):957–995. https://doi.org/10.1016/j.watres.2012.11.027 Nnadozie CF, Kumari S, Bux F (2017) Status of pathogens, antibiotic resistance genes and antibiotic residues in wastewater treatment systems. Rev Environ Sci Bio-Technol 16(3):491–515. https://doi.org/10.1007/s11157-017-9438-x Nyamukamba P, Moloto MJ, Tavengwa N, Ejidike IP (2019) Evaluating Physicochemical Parameters, Heavy Metals, and Antibiotics in the Influents and Final Effluents of South African Wastewater Treatment Plants. Polish J Environ Stud 28(3):1305–1312. https://doi.org/10.15244/pjoes/85122 Padhye LP, Yao H, Kung’u FT, Huang CH (2014) Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant. Water Res 51:266–276. https://doi.org/10.1016/j.watres.2013.10.070 Peng XZ, Wang ZD, Kuang WX, Tan JH, Li K (2006) A preliminary study on the occurrence and behavior of sulfonamides, ofloxacin and chloramphenicol antimicrobials in wastewaters of two sewage treatment plants in Guangzhou, China. Sci Total Environ 371(1–3):314–322. https://doi.org/10.1016/j.scitotenv.2006.07.001 Qiao M, Ying GG, Singer AC, Zhu YG (2018) Review of antibiotic resistance in China and its environment. Environ Int 110:160–172. https://doi.org/10.1016/j.envint.2017.10.016 Renault F, Sancey B, Badot PM, Crini G (2009) Chitosan for coagulation/flocculation processes - An eco-friendly approach. Eur Polymer J 45(5):1337–1348. https://doi.org/10.1016/j.eurpolymj.2008.12.027 Slana M, Zigon D, Sollner-Dolenc M (2017) Enrofloxacin degradation in broiler chicken manure under field conditions and its residuals effects to the environment. Environ Sci Pollut Res 24(15):13722–13731. https://doi.org/10.1007/s11356-017-8722-1 Tewari S, Jindal R, Kho YL, Eo S, Choi K (2013) Major pharmaceutical residues in wastewater treatment plants and receiving waters in Bangkok, Thailand, and associated ecological risks. Chemosphere 91(5):697–704. https://doi.org/10.1016/j.chemosphere.2012.12.042 Tolls J (2001) Sorption of veterinary pharmaceuticals in soils: A review. Environ Sci Technol 35(17):3397–3406. https://doi.org/10.1021/es0003021 Vellinga A, Cormican S, Driscoll J, Furey M, O’Sullivan M, Cormican M (2014) Public practice regarding disposal of unused medicines in Ireland. Sci Total Environ 478:98–102. https://doi.org/10.1016/j.scitotenv.2014.01.085 Verlicchi P, Al Aukidy M, Zambello E (2012) Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment-A review. Sci Total Environ 429:123–155. https://doi.org/10.1016/j.scitotenv.2012.04.028 Wang YY, Du P, Huang F, Li DJ, Gu J, Shen FM et al (2016) Antimicrobial prescribing patterns in a large tertiary hospital in Shanghai, China. Int J Antimicrob Agents 48(6):666–673. https://doi.org/10.1016/j.ijantimicag.2016.09.008 Wang Y, Zhang RM, Li JY, Wu ZW, Yin WJ, Schwarz S et al (2017) Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production. Nat Microbiol 2(4):7. https://doi.org/10.1038/nmicrobiol.2016.260 Wang WH, Zhang WF, Liang H, Gao DW (2019a) Occurrence and fate of typical antibiotics in wastewater treatment plants in Harbin, North-east China. Front Environ Sci Eng 13(3):10. https://doi.org/10.1007/s11783-019-1118-3 Wang YX, Ding XH, Wang SY, Chen D (2019) The Research Progress of Removal of Antibiotics in Municipal Wastewater Treatment. Environ Sci Technol 42(5):135–142 (Retrieved from <Go to ISI>://CSCD:6524505) Wang JL, Chu LB, Wojnárovits L, Takács E (2020) Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: An overview. Sci Total Environ 744:12. https://doi.org/10.1016/j.scitotenv.2020.140997 Wang K, Zhuang T, Su ZX, Chi MH, Wang HC (2021) Antibiotic residues in wastewaters from sewage treatment plants and pharmaceutical industries: Occurrence, removal and environmental impacts. Sci Total Environ 788:11. https://doi.org/10.1016/j.scitotenv.2021.147811 Watkinson AJ, Murby EJ, Costanzo SD (2007) Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling. Water Res 41(18):4164–4176. https://doi.org/10.1016/j.watres.2007.04.005 Wu MH, Que CJ, Tang L, Xu H, Xiang JJ, Wang JJ et al (2016) Distribution, fate, and risk assessment of antibiotics in five wastewater treatment plants in Shanghai, China. Environ Sci Pollut Res 23(18):18055–18063. https://doi.org/10.1007/s11356-016-6946-0 Xu WH, Zhang G, Li XD, Zou SC, Li P, Hu ZH et al (2007) Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water Res 41(19):4526–4534. https://doi.org/10.1016/j.watres.2007.06.023 Xu BJ, Mao DQ, Luo Y, Xu L (2011) Sulfamethoxazole biodegradation and biotransformation in the water-sediment system of a natural river. Biores Technol 102(14):7069–7076. https://doi.org/10.1016/j.biortech.2011.04.086 Yan Q, Gao X, Chen YP, Peng XY, Zhang YX, Gan XM et al (2014a) Occurrence, fate and ecotoxicological assessment of pharmaceutically active compounds in wastewater and sludge from wastewater treatment plants in Chongqing, the Three Gorges Reservoir Area. Sci Total Environ 470:618–630. https://doi.org/10.1016/j.scitotenv.2013.09.032 Yan Q, Gao X, Huang L, Gan XM, Zhang YX, Chen YP et al (2014b) Occurrence and fate of pharmaceutically active compounds in the largest municipal wastewater treatment plant in Southwest China: Mass balance analysis and consumption back-calculated model. Chemosphere 99:160–170. https://doi.org/10.1016/j.chemosphere.2013.10.062 Yang X, Flowers RC, Weinberg HS, Singer PC (2011) Occurrence and removal of pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant. Water Res 45(16):5218–5228. https://doi.org/10.1016/j.watres.2011.07.026 Yang YY, Zhao JL, Liu YS, Liu WR, Zhang QQ, Yao L et al (2018) Pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) in surface and ground waters and their application as indication of wastewater contamination. Sci Total Environ 616:816–823. https://doi.org/10.1016/j.scitotenv.2017.10.241 Younes HA, Mahmoud HM, Abdelrahman MM, Nassar HF (2019) Seasonal occurrence, removal efficiency and associated ecological risk assessment of three antibiotics in a municipal wastewater treatment plant in Egypt. Environ Nanotechnol Monit Manag 12:100239–100236. https://doi.org/10.1016/j.enmm.2019.100239 Yuan XJ, Qiang ZM, Ben WW, Zhu B, Qu JH (2015) Distribution, mass load and environmental impact of multiple-class pharmaceuticals in conventional and upgraded municipal wastewater treatment plants in East China. Environ Sci-Process Impacts 17(3):596–605. https://doi.org/10.1039/c4em00596a Zhang T, Li B (2011) Occurrence, Transformation, and Fate of Antibiotics in Municipal Wastewater Treatment Plants. Crit Rev Environ Sci Technol 41(11):951–998. https://doi.org/10.1080/10643380903392692 Zhang HM, Liu PX, Feng YJ, Yang FL (2013) Fate of antibiotics during wastewater treatment and antibiotic distribution in the effluent-receiving waters of the Yellow Sea, northern China. Mar Pollut Bull 73(1):282–290. https://doi.org/10.1016/j.marpolbul.2013.05.007 Zhang QQ, Jia A, Wan Y, Liu H, Wang KP, Peng H et al (2014) Occurrences of Three Classes of Antibiotics in a Natural River Basin: Association with Antibiotic-Resistant Escherichia coli. Environ Sci Technol 48(24):14317–14325. https://doi.org/10.1021/es503700j Zhang H, Du MM, Jiang HY, Zhang DD, Lin LF, Ye H et al (2015a) Occurrence, seasonal variation and removal efficiency of antibiotics and their metabolites in wastewater treatment plants, Jiulongjiang River Basin, South China. Environ Sci-Process Impacts 17(1):225–234. https://doi.org/10.1039/c4em00457d Zhang QQ, Ying GG, Pan CG, Liu Y, Zhao JL (2015b) Comprehensive Evaluation of Antibiotics Emission and Fate in the River Basins of China: Source Analysis, Multimedia Modeling, and Linkage to Bacterial Resistance. Environ Sci Technol 49(11):6772–6782. https://doi.org/10.1021/acs.est.5b00729 Zhang X, Zhao HX, Du J, Qu YX, Shen C, Tan F et al (2017) Occurrence, removal, and risk assessment of antibiotics in 12 wastewater treatment plants from Dalian, China. Environ Sci Pollut Res 24(19):16478–16487. https://doi.org/10.1007/s11356-017-9296-7 Zhao JL, Ying GG, Liu YS, Chen F, Yang JF, Wang L et al (2010) Occurrence and a screening-level risk assessment of human pharmaceuticals in the pearl river system, South China. Environ Toxicol Chem 29(6):1377–1384. https://doi.org/10.1002/etc.161 Zhao HY, Bian JM, Han X, Zhang M, Zhan SY (2020) Outpatient antibiotic use associated with acute upper respiratory infections in China: a nationwide cross-sectional study. Int J Antimicrob Agents 56(6):8. https://doi.org/10.1016/j.ijantimicag.2020.106193 Zhao HY, Wei L, Li H, Zhang M, Cao B, Bian JM et al (2021) Appropriateness of antibiotic prescriptions in ambulatory care in China: a nationwide descriptive database study. Lancet Infect Dis 21(6):847–857. https://doi.org/10.1016/s1473-3099(20)30596-x Zheng WL, Wen XH, Zhang B, Qiu Y (2019) Selective effect and elimination of antibiotics in membrane bioreactor of urban wastewater treatment plant. Sci Total Environ 646:1293–1303. https://doi.org/10.1016/j.scitotenv.2018.07.400