Searches for continuous-wave gravitational radiation

Springer Science and Business Media LLC - Tập 26 - Trang 1-154 - 2023
Keith Riles1
1Physics Department, University of Michigan, Ann Arbor, USA

Tóm tắt

Now that detection of gravitational-wave signals from the coalescence of extra-galactic compact binary star mergers has become nearly routine, it is intriguing to consider other potential gravitational-wave signatures. Here we examine the prospects for discovery of continuous gravitational waves from fast-spinning neutron stars in our own galaxy and from more exotic sources. Potential continuous-wave sources are reviewed, search methodologies and results presented and prospects for imminent discovery discussed.

Tài liệu tham khảo

Aasi J et al (2013a) Directed search for continuous gravitational waves from the Galactic center. Phys Rev D. https://doi.org/10.1103/physrevd.88.102002 Aasi J et al (2013b) Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data. Phys Rev D 87(4):042001. https://doi.org/10.1103/PhysRevD.87.042001. arXiv:1207.7176 [gr-qc] Aasi J et al (2014a) First all-sky search for continuous gravitational waves from unknown sources in binary systems. Phys Rev D 90(6):062010. https://doi.org/10.1103/PhysRevD.90.062010. arXiv:1405.7904 [gr-qc] Aasi J et al (2014b) Gravitational waves from known pulsars: results from the initial detector era. Astrophys J 785(2):119. https://doi.org/10.1088/0004-637x/785/2/119 Aasi J et al (2014c) Implementation of an \({\cal{F} }\)-statistic all-sky search for continuous gravitational waves in Virgo VSR1 data. Class Quantum Grav 31(16):165014. https://doi.org/10.1088/0264-9381/31/16/165014 Aasi J et al (2015a) Advanced LIGO. Class Quantum Grav 32(7):074001. https://doi.org/10.1088/0264-9381/32/7/074001 Aasi J et al (2015b) Characterization of the LIGO detectors during their sixth science run. Class Quantum Grav 32(11):115012. https://doi.org/10.1088/0264-9381/32/11/115012 Aasi J et al (2015c) Directed search for gravitational waves from Scorpius X-1 with initial LIGO data. Phys Rev D 91:062008. https://doi.org/10.1103/PhysRevD.91.062008 Aasi J et al (2015d) Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data. Phys Rev D 91:2. https://doi.org/10.1103/physrevd.91.022004 Aasi J et al (2015e) Searches for continuous gravitational waves from nine young supernova remnants. Astrophys J 813(1):39. https://doi.org/10.1088/0004-637x/813/1/39 Aasi J et al (2016a) First low frequency all-sky search for continuous gravitational wave signals. Phys Rev D 93:042007. https://doi.org/10.1103/PhysRevD.93.042007 Aasi J et al (2016b) Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers. Phys Rev D 93:042006. https://doi.org/10.1103/PhysRevD.93.042006 Abadie J et al (2010) First search for gravitational waves from the youngest known neutron star. Astrophys J 722(2):1504–1513. https://doi.org/10.1088/0004-637x/722/2/1504 Abadie J et al (2011) Beating the spin-down limit on gravitational wave emission from the vela pulsar. Astrophys J 737(2):93. https://doi.org/10.1088/0004-637x/737/2/93 Abadie J et al (2012) All-sky search for periodic gravitational waves in the full S5 LIGO data. Phys Rev D 85(2):022001. https://doi.org/10.1103/physrevd.85.022001 Abazajian KN (2011) The consistency of Fermi-LAT observations of the galactic center with a millisecond pulsar population in the central stellar cluster. JCAP 03:010. https://doi.org/10.1088/1475-7516/2011/03/010. arXiv:1011.4275 [astro-ph.HE] Abbott BP et al (2004) Setting upper limits on the strength of periodic gravitational waves from PSR \(\rm J 1939+2134\) using the first science data from the GEO 600 and LIGO detectors. Phys Rev D 69:082004. https://doi.org/10.1103/PhysRevD.69.082004 Abbott BP et al (2005a) First all-sky upper limits from LIGO on the strength of periodic gravitational waves using the Hough transform. Phys Rev D 72:102004. https://doi.org/10.1103/PhysRevD.72.102004. arXiv:gr-qc/0508065 Abbott BP et al (2005b) Limits on gravitational-wave emission from selected pulsars using LIGO data. Phys Rev Lett 94:181103. https://doi.org/10.1103/PhysRevLett.94.181103 Abbott BP et al (2007a) Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: results from the second LIGO science run. Phys Rev D 76:082001. https://doi.org/10.1103/PhysRevD.76.082001 Abbott BP et al (2007b) Upper limits on gravitational wave emission from 78 radio pulsars. Phys Rev D 76:042001. https://doi.org/10.1103/PhysRevD.76.042001 Abbott BP et al (2008a) All-sky search for periodic gravitational waves in LIGO S4 data. Phys Rev D 77:022001. https://doi.org/10.1103/PhysRevD.77.022001, [Erratum: Phys. Rev. D 80, 129904 (2009)]. arXiv:0708.3818 [gr-qc] Abbott BP et al (2008b) Beating the spin-down limit on gravitational wave emission from the crab pulsar. Astrophys J Lett 683(1):L45. https://doi.org/10.1086/591526. arXiv:0805.4758 [astro-ph] Abbott BP et al (2009a) All-sky LIGO search for periodic gravitational waves in the early S5 Data. Phys Rev Lett 102:111102. https://doi.org/10.1103/PhysRevLett.102.111102. arXiv:0810.0283 [gr-qc] Abbott BP et al (2009b) Einstein@Home search for periodic gravitational waves in early S5 LIGO data. Phys Rev D 80:042003. https://doi.org/10.1103/PhysRevD.80.042003. arXiv:0905.1705 [gr-qc] Abbott BP et al (2009c) The Einstein@Home search for periodic gravitational waves in LIGO S4 data. Phys Rev D 79:022001. https://doi.org/10.1103/PhysRevD.79.022001. arXiv:0804.1747 [gr-qc] Abbott BP et al (2010) Searches for gravitational waves from known pulsars with science run 5 LIGO data. Astrophys J 713(1):671–685. https://doi.org/10.1088/0004-637x/713/1/671 Abbott BP et al (2016a) Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Phys Rev D 94(4):042002. https://doi.org/10.1103/PhysRevD.94.042002. arXiv:1605.03233 [gr-qc] Abbott BP et al (2016b) GW150914: the advanced LIGO detectors in the era of first discoveries. Phys Rev Lett 116(13):131103. https://doi.org/10.1103/PhysRevLett.116.131103. arXiv:1602.03838 [gr-qc] Abbott BP et al (2016c) GW150914: the advanced LIGO detectors in the era of first discoveries. Phys Rev Lett 116:131103. https://doi.org/10.1103/PhysRevLett.116.131103 Abbott BP et al (2016d) GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys Rev Lett 116:241103. https://doi.org/10.1103/PhysRevLett.116.241103 Abbott BP et al (2016e) Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Phys Rev D 94(10):102002. https://doi.org/10.1103/PhysRevD.94.102002. arXiv:1606.09619 [gr-qc] Abbott BP et al (2017a) All-sky search for periodic gravitational waves in the O1 LIGO data. Phys Rev D 96(6):062002. https://doi.org/10.1103/PhysRevD.96.062002. arXiv:1707.02667 [gr-qc] Abbott BP et al (2017b) Directional limits on persistent gravitational waves from advanced LIGO’s first observing run. Phys Rev Lett 118:121102. https://doi.org/10.1103/PhysRevLett.118.121102 Abbott BP et al (2017c) Exploring the sensitivity of next generation gravitational wave detectors. Class Quantum Grav 34(4):044001. https://doi.org/10.1088/1361-6382/aa51f4 Abbott BP et al (2017d) First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data. Phys Rev D 96(12):122004. https://doi.org/10.1103/PhysRevD.96.122004. arXiv:1707.02669 [gr-qc] Abbott BP et al (2017e) First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data. Phys Rev D 96:122006. https://doi.org/10.1103/PhysRevD.96.122006 Abbott BP et al (2017f) First search for gravitational waves from known pulsars with Advanced LIGO. Astrophys J 839(1):12. https://doi.org/10.3847/1538-4357/aa677f, [Erratum: Astrophys. J. 851, 71 (2017)]. arXiv:1701.07709 [astro-ph.HE] Abbott BP et al (2017g) Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys J 848(2):L13. https://doi.org/10.3847/2041-8213/aa920c Abbott BP et al (2017h) GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys Rev Lett 118:221101. https://doi.org/10.1103/PhysRevLett.118.221101 Abbott BP et al (2017i) GW170608: observation of a 19-solar-mass binary black hole coalescence. Astrophys J 851(2):L35. https://doi.org/10.3847/2041-8213/aa9f0c. arXiv:1711.05578 [astro-ph.HE] Abbott BP et al (2017j) GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Phys Rev Lett 119:141101. https://doi.org/10.1103/PhysRevLett.119.141101 Abbott BP et al (2017k) GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys Rev Lett 119:161101. https://doi.org/10.1103/PhysRevLett.119.161101 Abbott BP et al (2017l) Multi-messenger observations of a binary neutron star merger. Astrophys J Lett 848(2):L12. https://doi.org/10.3847/2041-8213/aa91c9. arXiv:1710.05833 [astro-ph.HE] Abbott BP et al (2017m) Search for continuous gravitational waves from neutron stars in globular cluster NGC 6544. Phys Rev D 95:082005. https://doi.org/10.1103/PhysRevD.95.082005 Abbott BP et al (2017n) Search for gravitational waves from Scorpius X-1 in the first Advanced LIGO observing run with a hidden Markov model. Phys Rev D 95:122003. https://doi.org/10.1103/PhysRevD.95.122003 Abbott BP et al (2017o) Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817. Astrophys J Lett 851(1):L16. https://doi.org/10.3847/2041-8213/aa9a35. arXiv:1710.09320 [astro-ph.HE] Abbott BP et al (2017p) Upper limits on gravitational waves from Scorpius X-1 from a model-based cross-correlation search in advanced LIGO data. Astrophys J 847(1):47. https://doi.org/10.3847/1538-4357/aa86f0 Abbott BP et al (2018a) First search for nontensorial gravitational waves from known pulsars. Phys Rev Lett 120(3):031104. https://doi.org/10.1103/PhysRevLett.120.031104. arXiv:1709.09203 [gr-qc] Abbott BP et al (2018b) Full band all-sky search for periodic gravitational waves in the O1 LIGO data. Phys Rev D 97(10):102003. https://doi.org/10.1103/PhysRevD.97.102003. arXiv:1802.05241 [gr-qc] Abbott BP et al (2018c) GW170817: measurements of neutron star radii and equation of state. Phys Rev Lett 121:161101. https://doi.org/10.1103/PhysRevLett.121.161101 Abbott BP et al (2019a) All-sky search for continuous gravitational waves from isolated neutron stars using advanced LIGO O2 data. Phys Rev D 100(2):024004. https://doi.org/10.1103/PhysRevD.100.024004. arXiv:1903.01901 [astro-ph.HE] Abbott BP et al (2019b) GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Phys Rev X 9:031040. https://doi.org/10.1103/PhysRevX.9.031040 Abbott BP et al (2019c) Narrow-band search for gravitational waves from known pulsars using the second LIGO observing run. Phys Rev D 99:12. https://doi.org/10.1103/physrevd.99.122002 Abbott BP et al (2019d) Search for gravitational waves from a long-lived remnant of the binary neutron star merger GW170817. Astrophys J 875(2):160. https://doi.org/10.3847/1538-4357/ab0f3d. arXiv:1810.02581 [gr-qc] Abbott BP et al (2019e) Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model. Phys Rev D. https://doi.org/10.1103/physrevd.100.122002 Abbott BP et al (2019f) Searches for continuous gravitational waves from 15 supernova remnants and Fomalhaut b with advanced LIGO. Astrophys J 875(2):122. https://doi.org/10.3847/1538-4357/ab113b. arXiv:1812.11656 [astro-ph.HE] Abbott BP et al (2019g) Searches for gravitational waves from known pulsars at two harmonics in 2015–2017 LIGO data. Astrophys J 879(1):10. https://doi.org/10.3847/1538-4357/ab20cb. arXiv:1902.08507 [astro-ph.HE] Abbott BP et al (2020a) GW190425: observation of a compact binary coalescence with total mass \(\sim 3.4 M_{\odot }\). Astrophys J Lett 892(1):L3. https://doi.org/10.3847/2041-8213/ab75f5. arXiv:2001.01761 Abbott BP et al (2020b) Prospects for observing and localizing gravitational-wave transients with advanced LIGO, Advanced Virgo and KAGRA. Living Rev Relativ 23(1):3. https://doi.org/10.1007/s41114-020-00026-9 Abbott R et al (2020c) Gravitational-wave constraints on the equatorial ellipticity of millisecond pulsars. Astrophys J Lett 902(1):L21. https://doi.org/10.3847/2041-8213/abb655 Abbott R et al (2020d) GW190521: a binary black hole merger with a total mass of \(150 ~ M_{\odot }\). Phys Rev Lett 125(10):101102. https://doi.org/10.1103/PhysRevLett.125.101102. arXiv:2009.01075 [gr-qc] Abbott R et al (2020e) GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object. Astrophys J 896(2):L44. https://doi.org/10.3847/2041-8213/ab960f Abbott R et al (2021a) All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data. Phys Rev D 104(8):082004. https://doi.org/10.1103/physrevd.104.082004 Abbott R et al (2021b) All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. Phys Rev D 103:064017. https://doi.org/10.1103/PhysRevD.103.064017 Abbott R et al (2021c) Constraints from LIGO O3 data on gravitational-wave emission due to R-modes in the glitching pulsar PSR J0537–6910. Astrophys J 922(1):71. https://doi.org/10.3847/1538-4357/ac0d52 Abbott R et al (2021d) Diving below the spin-down limit: constraints on gravitational waves from the energetic young pulsar PSR J0537–6910. Astrophys J Lett 913(2):L27. https://doi.org/10.3847/2041-8213/abffcd Abbott R et al (2021e) GWTC-2: compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run. Phys Rev X 11:021053. https://doi.org/10.1103/PhysRevX.11.021053 Abbott R et al (2021f) GWTC-3: compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run. arXiv:2111.03606 [gr-qc] Abbott R et al (2021g) Observation of gravitational waves from two neutron star-black hole coalescences. Astrophys J Lett 915(1):L5. https://doi.org/10.3847/2041-8213/ac082e. arXiv:2106.15163 [astro-ph.HE] Abbott R et al (2021h) Search for anisotropic gravitational-wave backgrounds using data from Advanced LIGO and Advanced Virgo’s first three observing runs. Phys Rev D 104(2):022005. https://doi.org/10.1103/PhysRevD.104.022005. arXiv:2103.08520 [gr-qc] Abbott R et al (2021i) Searches for continuous gravitational waves from young supernova remnants in the early third observing run of Advanced LIGO and Virgo. Astrophys J 921(1):80. https://doi.org/10.3847/1538-4357/ac17ea. arXiv:2105.11641 [gr-qc] Abbott R et al (2022a) All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO’s and Advanced Virgo’s first three observing runs. Phys Rev D 105:122001. https://doi.org/10.1103/PhysRevD.105.122001. arXiv:2110.09834 [gr-qc] Abbott R et al (2022b) All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data. Phys Rev D 106:102008. https://doi.org/10.1103/PhysRevD.106.102008. arXiv:2201.00697 [gr-qc] Abbott R et al (2022c) All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data. Phys Rev D 105:102001. https://doi.org/10.1103/PhysRevD.105.102001. arXiv:2111.15507 [astro-ph.HE] Abbott R et al (2022d) Constraints on dark photon dark matter using data from LIGO’s and Virgo’s third observing run. Phys Rev D 105:063030. https://doi.org/10.1103/PhysRevD.105.063030. arXiv:2105.13085 [astro-ph.CO] Abbott R et al (2022e) Model-based cross-correlation search for gravitational waves from the low-mass X-ray binary Scorpius X-1 in LIGO O3 data. Astrophys J Lett 941(2):L30. https://doi.org/10.3847/2041-8213/aca1b0 Abbott R et al (2022f) Narrowband searches for continuous and long-duration transient gravitational waves from known pulsars in the LIGO-Virgo third observing run. Astrophys J 932(2):133. https://doi.org/10.3847/1538-4357/ac6ad0. arXiv:2112.10990 [gr-qc] Abbott R et al (2022g) Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data. Phys Rev D 105:022002. https://doi.org/10.1103/PhysRevD.105.022002 Abbott R et al (2022h) Search for gravitational waves from Scorpius X-1 with a hidden Markov model in O3 LIGO data. Phys Rev D 106(6):062002. https://doi.org/10.1103/PhysRevD.106.062002. arXiv:2201.10104 [gr-qc] Abbott R et al (2022i) Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. Supernova Remnants. Phys Rev D 105:082005. https://doi.org/10.1103/PhysRevD.105.082005. arXiv:2111.15116 [gr-qc] Abbott R et al (2022j) Searches for gravitational waves from known pulsars at two harmonics in the second and third LIGO-Virgo observing runs. Astrophys J 935(1):1. https://doi.org/10.3847/1538-4357/ac6acf. arXiv:2111.13106 [astro-ph.HE] Acernese F et al (2014) Advanced Virgo: a second-generation interferometric gravitational wave detector. Class Quantum Grav 32(2):024001. https://doi.org/10.1088/0264-9381/32/2/024001 Ackermann M et al (2017) The Fermi galactic center GeV excess and implications for dark matter. Astrophys J 840(1):43. https://doi.org/10.3847/1538-4357/aa6cab. arXiv:1704.03910 [astro-ph.HE] Aharonian F et al (2005) A new population of very high energy gamma-ray sources in the milky way. Science 307(5717):1938–1942. https://doi.org/10.1126/science.1108643 Aharonian F et al (2008) HESS very-high-energy gamma-ray sources without identified counterparts. Astron Astrophys 477(1):353–363. https://doi.org/10.1051/0004-6361:20078516. arXiv:0712.1173 [astro-ph] Alarie A, Bilodeau A, Drissen L (2014) A hyperspectral view of Cassiopeia A. Mon Not R Astron Soc 441:2996–3008. https://doi.org/10.1093/mnras/stu774 Alford MG, Schwenzer K (2014) Gravitational wave emission and spindown of young pulsars. Astrophys J 781:26. https://doi.org/10.1088/0004-637X/781/1/26. arXiv:1210.6091 [gr-qc] Alford MG, Schwenzer K (2015) Gravitational wave emission from oscillating millisecond pulsars. Mon Not R Astron Soc 446(4):3631–3641. https://doi.org/10.1093/mnras/stu2361. arXiv:1403.7500 [gr-qc] Allen B (2019) Spherical ansatz for parameter-space metrics. Phys Rev D 100(12):124004. https://doi.org/10.1103/PhysRevD.100.124004. arXiv:1906.01352 [gr-qc] Allen B (2021) Optimal template banks. Phys Rev D 104(4):042005. https://doi.org/10.1103/PhysRevD.104.042005. arXiv:2102.11254 [astro-ph.IM] Allen B, Hua W, Ottewill A (1999) Automatic cross-talk removal from multi-channel data. arXiv:gr-qc/9909083 [gr-qc] Allen B, Papa MA, Schutz BF (2002) Optimal strategies for sinusoidal signal detection. Phys Rev D 66:102003. https://doi.org/10.1103/PhysRevD.66.102003 Allen GE, Chow K, DeLaney T, Filipovic MD, Houck JC, Pannuti TG, Stage MD (2015) On the expansion rate, age, and distance of the Supernova Remnant G266.2–1.2 (Vela Jr.). Astrophys J 798(2):82. https://doi.org/10.1088/0004-637X/798/2/82 Alpar MA, Cheng AF, Ruderman MA, Shaham J (1982) A new class of radio pulsars. Nature 300(5894):728–730. https://doi.org/10.1038/300728a0 Althouse B, Jones L, Lazzarini A (1998) Determination of global and local coordinate axes for the LIGO sites. Tech. Rep. LIGO Report T980044, LIGO. https://dcc.ligo.org/T980044 Anderson DP, Cobb J, Korpela E, Lebofsky M, Werthimer D (2002) SETI@home: an experiment in public-resource computing. Commun ACM 45(11):56–61. https://doi.org/10.1145/581571.581573 Andersson N (1998) A new class of unstable modes of rotating relativistic stars. Astrophys J 502:708–713. https://doi.org/10.1086/305919. arXiv:gr-qc/9706075 Andersson N (2019) Gravitational-wave astronomy: exploring the dark side of the universe. Oxford Univ Press. https://doi.org/10.1093/oso/9780198568032.001.0001 Andersson N, Jones DI, Ho WCG (2014) Implications of an r-mode in XTE J1751–305: mass, radius and spin evolution. Mon Not R Astron Soc 442(2):1786–1793. https://doi.org/10.1093/mnras/stu870. arXiv:1403.0860 [astro-ph.SR] Andersson N, Antonopoulou D, Espinoza CM, Haskell B, Ho WCG (2018) The enigmatic spin evolution of PSR J0537–6910: r-modes, gravitational waves, and the case for continued timing. Astrophys J 864(2):137. https://doi.org/10.3847/1538-4357/aad6eb. arXiv:1711.05550 [astro-ph.HE] Antoniadis J, Freire PCC, Wex N, Tauris TM, Lynch RS, van Kerkwijk MH, Kramer M, Bassa C, Dhillon VS, Driebe T, Hessels JWT, Kaspi VM, Kondratiev VI, Langer N, Marsh TR, McLaughlin MA, Pennucci TT, Ransom SM, Stairs IH, van Leeuwen J, Verbiest JPW, Whelan DG (2013) A massive pulsar in a compact relativistic binary. Science 340(6131):448. https://doi.org/10.1126/science.1233232. arXiv:1304.6875 [astro-ph.HE] Antonopoulou D, Espinoza CM, Kuiper L, Andersson N (2018) Pulsar spin-down: the glitch-dominated rotation of PSR J0537\(-\)6910. Mon Not R Astron Soc 473(2):1644–1655. https://doi.org/10.1093/mnras/stx2429. arXiv:1708.09459 [astro-ph.HE] Antonucci F, Astone P, D’Antonio S, Frasca S, Palomba C (2008) Detection of periodic gravitational wave sources by Hough transform in the \(f\) versus \({{\dot{f}}}\) plane. Class Quantum Grav 25(18):184015. https://doi.org/10.1088/0264-9381/25/18/184015 Archibald AM, Stairs IH, Ransom SM, Kaspi VM, Kondratiev VI, Lorimer DR, McLaughlin MA, Boyles J, Hessels JWT, Lynch R, van Leeuwen J, Roberts MSE, Jenet F, Champion DJ, Rosen R, Barlow BN, Dunlap BH, Remillard RA (2009) A radio pulsar/X-ray binary link. Science 324(5933):1411–1414. https://doi.org/10.1126/science.1172740 Archibald RF, Gotthelf EV, Ferdman RD, Kaspi VM, Guillot S, Harrison FA, Keane EF, Pivovaroff MJ, Stern D, Tendulkar SP et al (2016) A high braking index for a pulsar. Astrophys J 819(1):L16. https://doi.org/10.3847/2041-8205/819/1/l16 Arras P, Flanagan EE, Morsink SM, Schenk A, Teukolsky SA, Wasserman I (2003) Saturation of the R mode instability. Astrophys J 591:1129–1151. https://doi.org/10.1086/374657. arXiv:astro-ph/0202345 Arvanitaki A, Dubovsky S (2011) Exploring the string axiverse with precision black hole physics. Phys Rev D 83:044026. https://doi.org/10.1103/PhysRevD.83.044026. arXiv:1004.3558 [hep-th] Arvanitaki A, Dimopoulos S, Dubovsky S, Kaloper N, March-Russell J (2010) String axiverse. Phys Rev D 81:123530. https://doi.org/10.1103/PhysRevD.81.123530 Arvanitaki A, Baryakhtar M, Huang X (2015) Discovering the QCD axion with black holes and gravitational waves. Phys Rev D 91(8):084011. https://doi.org/10.1103/PhysRevD.91.084011. arXiv:1411.2263 [hep-ph] Arvanitaki A, Baryakhtar M, Dimopoulos S, Dubovsky S, Lasenby R (2017) Black hole mergers and the QCD axion at advanced LIGO. Phys Rev D 95:043001. https://doi.org/10.1103/PhysRevD.95.043001 Arzoumanian Z, Brazier A, Burke-Spolaor S, Chamberlin S, Chatterjee S, Christy B, Cordes JM, Cornish NJ, Crawford F, Thankful Cromartie H, Crowter K, DeCesar ME, Demorest PB, Dolch T, Ellis JA, Ferdman RD, Ferrara EC, Fonseca E, Garver-Daniels N, Gentile PA, Halmrast D, Huerta EA, Jenet FA, Jessup C, Jones G, Jones ML, Kaplan DL, Lam MT, Lazio TJW, Levin L, Lommen A, Lorimer DR, Luo J, Lynch RS, Madison D, Matthews AM, McLaughlin MA, McWilliams ST, Mingarelli C, Ng C, Nice DJ, Pennucci TT, Ransom SM, Ray PS, Siemens X, Simon J, Spiewak R, Stairs IH, Stinebring DR, Stovall K, Swiggum JK, Taylor SR, Vallisneri M, van Haasteren R, Vigeland SJ, Zhu W, NANOGrav Collaboration (2018) The NANOGrav 11-year data set: high-precision timing of 45 millisecond pulsars. Astrophys J Suppl 235(2):37. https://doi.org/10.3847/1538-4365/aab5b0. arXiv:1801.01837 [astro-ph.HE] Ashok A, Beheshtipour B, Papa MA, Freire PCC, Steltner B, Machenschalk B, Behnke O, Allen B, Prix R (2021) New searches for continuous gravitational waves from seven fast pulsars. Astrophys J 923(1):85. https://doi.org/10.3847/1538-4357/ac2582 Ashton G, Prix R (2018) Hierarchical multistage MCMC follow-up of continuous gravitational wave candidates. Phys Rev D 97(10):103020. https://doi.org/10.1103/PhysRevD.97.103020. arXiv:1802.05450 [astro-ph.IM] Ashton G, Prix R, Jones DI (2017) Statistical characterization of pulsar glitches and their potential impact on searches for continuous gravitational waves. Phys Rev D 96(6):063004. https://doi.org/10.1103/PhysRevD.96.063004. arXiv:1704.00742 [gr-qc] Ashton G, Lasky PD, Graber V, Palfreyman J (2019) Rotational evolution of the Vela pulsar during the 2016 glitch. Nat Astron 3(12):1143–1148. https://doi.org/10.1038/s41550-019-0844-6 Astone P et al (2002a) Search for periodic gravitational wave sources with the explorer detector. Phys Rev D 65:022001. https://doi.org/10.1103/PhysRevD.65.022001. arXiv:gr-qc/0011072 Astone P, Borkowski KM, Jaranowski P, Królak A (2002b) Data analysis of gravitational-wave signals from spinning neutron stars. IV. An all-sky search. Phys Rev D 65:042003. https://doi.org/10.1103/PhysRevD.65.042003 Astone P, Frasca S, Palomba C (2005) The short FFT database and the peak map for the hierarchical search of periodic sources. Class Quantum Grav 22(18):S1197–S1210. https://doi.org/10.1088/0264-9381/22/18/s34 Astone P, Bassan M, Bonifazi P, Borkowski KM, Budzyński RJ, Chincarini A, Coccia E, D’Antonio S, Emilio MDP, Fafone V et al (2008) All-sky search of NAUTILUS data. Class Quantum Grav 25(18):184012. https://doi.org/10.1088/0264-9381/25/18/184012 Astone P, Borkowski KM, Jaranowski P, Pietka M, Królak A (2010a) Data analysis of gravitational-wave signals from spinning neutron stars. V. A narrow-band all-sky search. Phys Rev D 82:022005. https://doi.org/10.1103/PhysRevD.82.022005 Astone P, D’Antonio S, Frasca S, Palomba C (2010b) A method for detection of known sources of continuous gravitational wave signals in non-stationary data. Class Quant Grav 27:194016. https://doi.org/10.1088/0264-9381/27/19/194016 Astone P, Colla A, D’Antonio S, Frasca S, Palomba C (2012) Coherent search of continuous gravitational wave signals: extension of the 5-vectors method to a network of detectors. J Phys: Conf Ser 363:012038. https://doi.org/10.1088/1742-6596/363/1/012038. arXiv:1203.6733 [astro-ph.IM] Astone P, Colla A, D’Antonio S, Frasca S, Palomba C (2014a) Method for all-sky searches of continuous gravitational wave signals using the frequency-Hough transform. Phys Rev D 90:042002. https://doi.org/10.1103/PhysRevD.90.042002 Astone P, Colla A, D’Antonio S, Frasca S, Palomba C, Serafinelli R (2014b) Method for narrow-band search of continuous gravitational wave signals. Phys Rev D 89:062008. https://doi.org/10.1103/PhysRevD.89.062008 Baade W, Zwicky F (1934) Cosmic rays from Super-Novae. Proc Natl Acad Sci 20(5):259–263. https://doi.org/10.1073/pnas.20.5.259 Baiko DA, Chugunov AI (2018) Breaking properties of neutron star crust. Mon Not R Astron Soc 480(4):5511–5516. https://doi.org/10.1093/mnras/sty2259. arXiv:1808.06415 [astro-ph.HE] Baiotti L, Rezzolla L (2017) Binary neutron star mergers: a review of Einstein’s richest laboratory. Rep Prog Phys 80(9):096901. https://doi.org/10.1088/1361-6633/aa67bb Balasubramanian R, Sathyaprakash BS, Dhurandhar SV (1996) Gravitational waves from coalescing binaries: Detection strategies and Monte Carlo estimation of parameters. Phys Rev D 53:3033–3055. https://doi.org/10.1103/PhysRevD.53.3033, [Erratum: Phys. Rev. D 54, 1860 (1996)]. arXiv:gr-qc/9508011 Ballmer SW (2006) A radiometer for stochastic gravitational waves. Class Quantum Grav 23(8):S179–S185. https://doi.org/10.1088/0264-9381/23/8/s23 Banagiri S, Sun L, Coughlin MW, Melatos A (2019) Search strategies for long gravitational-wave transients: hidden Markov model tracking and seedless clustering. Phys Rev D 100:024034. https://doi.org/10.1103/PhysRevD.100.024034 Bassa CG, Pleunis Z, Hessels JWT, Ferrara EC, Breton RP, Gusinskaia NV, Kondratiev VI, Sanidas S, Nieder L, Clark CJ, Li T, van Amesfoort AS, Burnett TH, Camilo F, Michelson PF, Ransom SM, Ray PS, Wood K (2017) LOFAR discovery of the fastest-spinning millisecond pulsar in the galactic field. Astrophys J Lett 846(2):L20. https://doi.org/10.3847/2041-8213/aa8400. arXiv:1709.01453 [astro-ph.HE] Baumann D, Chia HS, Stout J, ter Haar L (2019) The spectra of gravitational atoms. JCAP 12:006. https://doi.org/10.1088/1475-7516/2019/12/006. arXiv:1908.10370 [gr-qc] Bayley J, Messenger C, Woan G (2020) Robust machine learning algorithm to search for continuous gravitational waves. Phys Rev D. https://doi.org/10.1103/physrevd.102.083024 Baym G, Pethick C, Pines D, Ruderman M (1969) Spin up in neutron stars: the future of the vela pulsar. Nature 224(5222):872–874. https://doi.org/10.1038/224872a0 Becker W (ed) (2009) Neutron stars and pulsars. Astrophysics and space science library, vol 357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76965-1 Becker W, Hui CY, Aschenbach B, Iyudin A (2006) Exploring the central compact object in the RX J0852.0-4622 Supernova Remnant with XMM-Newton. astro-ph/0607081. arXiv:astro-ph/0607081 [astro-ph] Beheshtipour B, Papa MA (2020) Deep learning for clustering of continuous gravitational wave candidates. Phys Rev D. https://doi.org/10.1103/physrevd.101.064009 Beheshtipour B, Papa MA (2021) Deep learning for clustering of continuous gravitational wave candidates. II. Identification of low-SNR candidates. Phys Rev D 103:064027. https://doi.org/10.1103/PhysRevD.103.064027 Behnke B, Papa MA, Prix R (2015) Postprocessing methods used in the search for continuous gravitational-wave signals from the Galactic Center. Phys Rev D 91:064007. https://doi.org/10.1103/PhysRevD.91.064007 Bender P et al (1996) MPQ Reports, MPQ-208. Technical report, Max-Planck-Institut für Quantenoptik, Garching. https://www.elisascience.org Beniwal D, Clearwater P, Dunn L, Strang L, Rowell G, Melatos A, Ottaway D (2022) Search for continuous gravitational waves from HESS J1427-608 with a hidden Markov model. Phys Rev D 106(10):103018. https://doi.org/10.1103/PhysRevD.106.103018. arXiv:2210.09592 [astro-ph.HE] Bernal CG, Lee WH, Page D (2010) Hypercritical accretion onto a magnetized neutron star surface: a numerical approach. Rev Mex Astron Astrof 46:309–322 Bero JJ, Whelan JT (2019) An analytic approximation to the Bayesian detection statistic for continuous gravitational waves. Class Quant Grav 36(1):015013. https://doi.org/10.1088/1361-6382/aaed6a, [Erratum: Class. Quant. Grav. 36, 049601 (2019)]. arXiv:1808.05453 [gr-qc] Bertone G (2010) Particle dark matter: observations. Camb Univ Press Models Sear. https://doi.org/10.1017/CBO9780511770739 Beskin VS, Istomin AY (2022) Pulsar death line revisited-II ‘The death valley’. Mon Not R Astron Soc 516(4):5084–5091. https://doi.org/10.1093/mnras/stac2423. arXiv:2207.04723 [astro-ph.HE] Beskin VS, Litvinov PE (2022) Pulsar death line revisited—I. Almost vacuum gap. Mon Not R Astron Soc 510(2):2572–2582. https://doi.org/10.1093/mnras/stab3575. arXiv:2201.02875 [astro-ph.HE] Bhattacharyya S (2020) The permanent ellipticity of the neutron star in PSR J1023+0038. Mon Not R Astron Soc 498(1):728–736. https://doi.org/10.1093/mnras/staa2304. arXiv:2008.01716 [astro-ph.HE] Bhattacharyya S (2021) Spin evolution of neutron stars in two modes: implication for millisecond pulsars. Mon Not Roy Astronom Soc Lett 502(1):L45–L49. https://doi.org/10.1093/mnrasl/slab001 Bildsten L (1998) Gravitational radiation and rotation of accreting neutron stars. Astrophys J 501(1):L89–L93. https://doi.org/10.1086/311440 Biwer C, Barker D, Batch JC, Betzwieser J, Fisher RP, Goetz E, Kandhasamy S, Karki S, Kissel JS, Lundgren AP et al (2017) Validating gravitational-wave detections: the Advanced LIGO hardware injection system. Phys Rev D. https://doi.org/10.1103/physrevd.95.062002 Blaes O, Madau P (1993) Can we observe accreting, isolated neutron stars? Astrophys J 403:690. https://doi.org/10.1086/172240 Blair DG et al (1991) The detection of gravitational waves. Cambridge University Press, Cambridge Blair DG et al (2012) Advanced gravitational wave detectors. Cambridge University Press, Cambridge Bogdanov S, Guillot S, Ray PS, Wolff MT, Chakrabarty D, Ho WCG, Kerr M, Lamb FK, Lommen A, Ludlam RM, Milburn R, Montano S, Miller MC, Bauböck M, Özel F, Psaltis D, Remillard RA, Riley TE, Steiner JF, Strohmayer TE, Watts AL, Wood KS, Zeldes J, Enoto T, Okajima T, Kellogg JW, Baker C, Markwardt CD, Arzoumanian Z, Gendreau KC (2019a) Constraining the neutron star mass–radius relation and dense matter equation of state with NICER. I. The millisecond pulsar X-Ray Data Set. Astrophys J Lett 887(1):L25. https://doi.org/10.3847/2041-8213/ab53eb. arXiv:1912.05706 [astro-ph.HE] Bogdanov S, Lamb FK, Mahmoodifar S, Miller MC, Morsink SM, Riley TE, Strohmayer TE, Tung AK, Watts AL, Dittmann AJ, Chakrabarty D, Guillot S, Arzoumanian Z, Gendreau KC (2019b) Constraining the neutron star mass–radius relation and dense matter equation of state with NICER. II. Emission from hot spots on a rapidly rotating neutron star. Astrophys J Lett 887(1):L26. https://doi.org/10.3847/2041-8213/ab5968. arXiv:1912.05707 [astro-ph.HE] Bogdanov S, et al. (2021) Constraining the neutron star mass-radius relation and dense matter equation of state with NICER. III. Model description and verification of parameter estimation codes. Astrophys J Lett 914(1):L15. https://doi.org/10.3847/2041-8213/abfb79. arXiv:2104.06928 [astro-ph.HE] Bonazzola S, Gourgoulhon E (1996) Gravitational waves from pulsars: emission by the magnetic field induced distortion. Astron Astrophys 312:675 arXiv:astro-ph/9602107 Bond HE, White RL, Becker RH, O’Brien MS (2002) FIRST J102347.6+003841: The first radio-selected cataclysmic variable. Publ Astronom Soc Pacific 114(802):1359–1363. https://doi.org/10.1086/344381 Bondi H, Hoyle F (1944) On the mechanism of accretion by stars. Mon Not R Astron Soc 104:273 Boztepe T, Göğüş E, Güver T, Schwenzer K (2020) Strengthening the bounds on the r-mode amplitude with X-ray observations of millisecond pulsars. Mon Not R Astron Soc 498(2):2734–2749. https://doi.org/10.1093/mnras/staa2503 Brady PR, Creighton T (2000) Searching for periodic sources with LIGO. II. Hierarchical searches. Phys Rev D 61:082001. https://doi.org/10.1103/PhysRevD.61.082001 Brady PR, Creighton T, Cutler C, Schutz BF (1998) Searching for periodic sources with LIGO. Phys Rev D 57:2101–2116. https://doi.org/10.1103/PhysRevD.57.2101. arXiv:gr-qc/9702050 Brito R, Ghosh S, Barausse E, Berti E, Cardoso V, Dvorkin I, Klein A, Pani P (2017a) Gravitational wave searches for ultralight bosons with LIGO and LISA. Phys Rev D 96:064050. https://doi.org/10.1103/PhysRevD.96.064050 Brito R, Ghosh S, Barausse E, Berti E, Cardoso V, Dvorkin I, Klein A, Pani P (2017b) Stochastic and resolvable gravitational waves from ultralight bosons. Phys Rev Lett 119(13):131101. https://doi.org/10.1103/PhysRevLett.119.131101. arXiv:1706.05097 [gr-qc] Brito R, Grillo S, Pani P (2020) Black hole superradiant instability from ultralight spin-2 fields. Phys Rev Lett 124:211101. https://doi.org/10.1103/PhysRevLett.124.211101 Brogan CL, Gaensler BM, Gelfand JD, Lazendic JS, Lazio TJW, Kassim NE, McClure-Griffiths NM (2005) Discovery of a radio Supernova Remnant and nonthermal X-rays coincident with the TeV source HESS J1813-178. Astrophys J Lett 629(2):L105–L108. https://doi.org/10.1086/491471. arXiv:astro-ph/0505145 [astro-ph] Buballa M et al (2014) EMMI rapid reaction task force meeting on quark matter in compact stars. J Phys G 41(12):123001. https://doi.org/10.1088/0954-3899/41/12/123001. arXiv:1402.6911 [astro-ph.HE] Buschauer R, Benford G (1976) General theory of coherent curvature radiation. Mon Not R Astron Soc 177(1):109–136. https://doi.org/10.1093/mnras/177.1.109 Caleb M, Heywood I, Rajwade K, Malenta M, Willem Stappers B, Barr E, Chen W, Morello V, Sanidas S, van den Eijnden J, Kramer M, Buckley D, Brink J, Motta SE, Woudt P, Weltevrede P, Jankowski F, Surnis M, Buchner S, Bezuidenhout MC, Driessen LN, Fender R (2022) Discovery of a radio-emitting neutron star with an ultra-long spin period of 76 s. Nat Astron. https://doi.org/10.1038/s41550-022-01688-x Camilo F, Ransom SM, Halpern JP, Roshi DA (2021) Radio detection of PSR J1813-1749 in HESS J1813-178: the most scattered pulsar known. Astrophys J Lett 917(2):67. https://doi.org/10.3847/1538-4357/ac0720. arXiv:2106.00386 [astro-ph.HE] Caplan ME, Horowitz CJ (2017) Colloquium: astromaterial science and nuclear pasta. Rev Mod Phys 89:041002. https://doi.org/10.1103/RevModPhys.89.041002 Cardoso V, Dias ÓJC, Hartnett GS, Middleton M, Pani P (2018) Constraining the mass of dark photons and axion-like particles through black-hole superradiance. J Cosmol Astropart Phys 03:043–043. https://doi.org/10.1088/1475-7516/2018/03/043 Cardoso V, Duque F, Ikeda T (2020) Tidal effects and disruption in superradiant clouds: a numerical investigation. Phys Rev D 101(6):064054. https://doi.org/10.1103/PhysRevD.101.064054. arXiv:2001.01729 [gr-qc] Caride S, Inta R, Owen BJ, Rajbhandari B (2019) How to search for gravitational waves from \(r\)-modes of known pulsars. Phys Rev D 100(6):064013. https://doi.org/10.1103/PhysRevD.100.064013. arXiv:1907.04946 [gr-qc] Cerda-Duran P, Elias-Rosa N (2018) Neutron stars formation and core collapse supernovae. In: Rezzolla L, Pizzochero P, Jones DI, Rea N, Vidaña I (eds) The physics and astrophysics of neutron stars. Springer, Cham, pp 1–56. https://doi.org/10.1007/978-3-319-97616-7_1 Chakrabarty D, Morgan EH, Muno MP, Galloway DK, Wijnands R, van der Klis M, Markwardt CB (2003) Nuclear-powered millisecond pulsars and the maximum spin frequency of neutron stars. Nature 424:42–44. https://doi.org/10.1038/nature01732. arXiv:astro-ph/0307029 Chamel N, Haensel P (2008) Physics of neutron star crusts. Living Rev Rel 11:10. https://doi.org/10.12942/lrr-2008-10 Chandrasekhar S (1970) Solutions of two problems in the theory of gravitational radiation. Phys Rev Lett 24:611–615. https://doi.org/10.1103/PhysRevLett.24.611 Chen WC (2020) Constraining the ellipticity of millisecond pulsars with observed spin-down rates. Phys Rev D. https://doi.org/10.1103/physrevd.102.043020 Chen K, Ruderman M (1993) Pulsar death lines and death valley. Astrophys J 402:264. https://doi.org/10.1086/172129 Chevalier RA (1989) Neutron star accretion in a supernova. Astrophys J 346:847. https://doi.org/10.1086/168066 Christodoulou D (1970) Reversible and irreversible transformations in black-hole physics. Phys Rev Lett 25:1596–1597. https://doi.org/10.1103/PhysRevLett.25.1596 Chung C, Melatos A, Krishnan B, Whelan JT (2011) Designing a cross-correlation search for continuous-wave gravitational radiation from a neutron star in the supernova remnant SNR 1987A. Mon Not R Astron Soc 414:2650. https://doi.org/10.1111/j.1365-2966.2011.18585.x. arXiv:1102.4654 [gr-qc] Cieślar M, Bulik T, Curylo M, Sieniawska M, Singh N, Bejger M (2021) Detectability of continuous gravitational waves from isolated neutron stars in the Milky Way—the population synthesis approach. A &A 649:A92. https://doi.org/10.1051/0004-6361/202039503 Clark CJ et al (2016) The braking index of a radio-quiet gamma-ray pulsar. Astrophys J Lett 832(1):L15. https://doi.org/10.3847/2041-8205/832/1/L15. arXiv:1611.01292 [astro-ph.HE] Clark CJ et al (2018) Einstein@Home discovers a radio-quiet gamma-ray millisecond pulsar. Sci Adv. https://doi.org/10.1126/sciadv.aao7228 Contopoulos I, Kazanas D, Fendt C (1999) The axisymmetric pulsar magnetosphere. Astrophys J 511:351. https://doi.org/10.1086/306652. arXiv:astro-ph/9903049 Cook GB, Shapiro SL, Teukolsky SA (1994) Rapidly rotating neutron stars in general relativity: realistic equations of state. Astrophys J 424:823. https://doi.org/10.1086/173934 Covas PB (2020) Effects of proper motion of neutron stars on continuous gravitational-wave searches. Mon Not R Astron Soc 500(4):5167–5176. https://doi.org/10.1093/mnras/staa3624 Covas PB, Prix R (2022) Improved all-sky search method for continuous gravitational waves from unknown neutron stars in binary systems. Phys Rev D 106(8):084035. https://doi.org/10.1103/PhysRevD.106.084035. arXiv:2208.01543 [gr-qc] Covas PB, Prix R (2022) Improved short-segment detection statistic for continuous gravitational waves. Phys Rev D 105:124007. https://doi.org/10.1103/PhysRevD.105.124007. arXiv:2203.08723 [gr-qc] Covas PB, Sintes AM (2019) New method to search for continuous gravitational waves from unknown neutron stars in binary systems. Phys Rev D 99(12):124019. https://doi.org/10.1103/PhysRevD.99.124019. arXiv:1904.04873 [astro-ph.IM] Covas PB, Sintes AM (2020) First all-sky search for continuous gravitational-wave signals from unknown neutron stars in binary systems using advanced LIGO data. Phys Rev Lett 124(19):191102. https://doi.org/10.1103/PhysRevLett.124.191102. arXiv:2001.08411 [gr-qc] Covas PB, Effler A, Goetz E, Meyers PM, Neunzert A, Oliver M, Pearlstone BL, Roma VJ, Schofield RMS, Adya VB et al (2018) Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of advanced LIGO. Phys Rev D. https://doi.org/10.1103/physrevd.97.082002 Covas PB, Papa MA, Prix R, Owen BJ (2022) Constraints on r-modes and mountains on millisecond neutron stars in binary systems. Astrophys J Lett 929(2):L19. https://doi.org/10.3847/2041-8213/ac62d7. arXiv:2203.01773 [gr-qc] Creighton JDE, Anderson WG (2011) Gravitational-wave physics and astronomy. Wiley-VCH, Weinheim Cromartie HT, Fonseca E, Ransom SM, Demorest PB, Arzoumanian Z, Blumer H, Brook PR, DeCesar ME, Dolch T, Ellis JA, Ferdman RD, Ferrara EC, Garver-Daniels N, Gentile PA, Jones ML, Lam MT, Lorimer DR, Lynch RS, McLaughlin MA, Ng C, Nice DJ, Pennucci TT, Spiewak R, Stairs IH, Stovall K, Swiggum JK, Zhu WW (2020) Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar. Nat Astron 4:72–76. https://doi.org/10.1038/s41550-019-0880-2. arXiv:1904.06759 [astro-ph.HE] Cruces M, Reisenegger A, Tauris TM (2019) On the weak magnetic field of millisecond pulsars: Does it decay before accretion? Mon Not R Astron Soc 490(2):2013–2022. https://doi.org/10.1093/mnras/stz2701. arXiv:1906.06076 [astro-ph.SR] Cutler C (2002) Gravitational waves from neutron stars with large toroidal B fields. Phys Rev D. https://doi.org/10.1103/physrevd.66.084025 Cutler C, Schutz BF (2005) Generalized F-statistic: multiple detectors and multiple gravitational wave pulsars. Phys Rev D. https://doi.org/10.1103/physrevd.72.063006 Cutler C, Gholami I, Krishnan B (2005) Improved stack-slide searches for gravitational-wave pulsars. Phys Rev D 72(4):042004. https://doi.org/10.1103/PhysRevD.72.042004 Dall’Osso S, Stella L (2022) Millisecond Magnetars. In: Bhattacharyya S, Papitto A, Bhattacharya D (eds) Millisecond pulsars. Astrophysics and Space Science Library, vol 465. Springer, Cham, pp 245–280. https://doi.org/10.1007/978-3-030-85198-9_8. arXiv:2103.10878 [astro-ph.HE] D’Antonio S, Palomba C, Astone P, Frasca S, Intini G, La Rosa I, Leaci P, Mastrogiovanni S, Miller A, Muciaccia F et al (2018) Semicoherent analysis method to search for continuous gravitational waves emitted by ultralight boson clouds around spinning black holes. Phys Rev D. https://doi.org/10.1103/physrevd.98.103017 Davis D, Massinger T, Lundgren A, Driggers JC, Urban AL, Nuttall L (2019) Improving the sensitivity of advanced LIGO using noise subtraction. Class Quantum Grav 36(5):055011. https://doi.org/10.1088/1361-6382/ab01c5 Davis D et al (2021) LIGO detector characterization in the second and third observing runs. Class Quantum Grav 38(13):135014. https://doi.org/10.1088/1361-6382/abfd85. arXiv:2101.11673 [astro-ph.IM] Daw EJ, Hollows IJ, Jones EL, Kennedy R, Mistry T, Edo TB, Fays M, Sun L (2022) IWAVE—an adaptive filter approach to phase lock and the dynamic characterization of pseudo-harmonic waves. Rev Sci Instrum 93(4):044502. https://doi.org/10.1063/5.0070394 de Araujo JCN, Coelho JG, Costa CA (2016) Gravitational waves from pulsars and their braking indices: the role of a time dependent magnetic ellipticity. Astrophys J 831(1):35. https://doi.org/10.3847/0004-637x/831/1/35 de Araujo JCN, Coelho JG, Costa CA (2017) Gravitational waves from pulsars in the context of magnetic ellipticity. Eur Phys J C. https://doi.org/10.1140/epjc/s10052-017-4925-3 De Lillo F, Suresh J, Miller AL (2022) Stochastic gravitational-wave background searches and constraints on neutron-star ellipticity. Mon Not R Astron Soc 513(1):1105–1114. https://doi.org/10.1093/mnras/stac984. arXiv:2203.03536 [gr-qc] De Luca A (2008) Central Compact objects in supernova remnants. In: Bassa C, Wang Z, Cumming A, Kaspi VM (eds) 40 Years of pulsars: millisecond pulsars, magnetars and more. AIP conference series, vol 983. pp 311–319. https://doi.org/10.1063/1.2900173. arXiv:0712.2209 [astro-ph] Degenaar N, Suleimanov VF (2018) Testing the equation of state with electromagnetic observations. In: Rezzolla L, Pizzochero P, Jones DI, Rea N, Vidaña I (eds) The physics and astrophysics of neutron stars. Astrophysics and Space Science Library, vol 457. Springer, p 185. https://doi.org/10.1007/978-3-319-97616-7_5 DeMarchi L, Sanders JR, Levesque EM (2021) Prospects for multimessenger observations of Thorne-Zytkow objects. Astrophys J 911(2):101. https://doi.org/10.3847/1538-4357/abebe1 Demorest PB, Pennucci T, Ransom SM, Roberts MSE, Hessels JWT (2010) A two-solar-mass neutron star measured using Shapiro delay. Nature 467(7319):1081–1083. https://doi.org/10.1038/nature09466. arXiv:1010.5788 [astro-ph.HE] Deneva JS, Cordes JM, Lazio TJW (2009) Discovery of three pulsars from a galactic center pulsar population. Astrophys J 702(2):L177–L181. https://doi.org/10.1088/0004-637x/702/2/l177 Dergachev V (2005) Description of PowerFlux algorithms and implementation, LIGO Report LIGO-T050186 Dergachev V (2010a) Description of PowerFlux 2 algorithms and implementation. Technical Report. LIGO Report T1000272, LIGO. https://dcc.ligo.org/T1000272 Dergachev V (2010b) On blind searches for noise dominated signals: a loosely coherent approach. Class Quantum Grav 27(20):205017. https://doi.org/10.1088/0264-9381/27/20/205017 Dergachev V (2012) Loosely coherent searches for sets of well-modeled signals. Phys Rev D 85:062003. https://doi.org/10.1103/PhysRevD.85.062003 Dergachev V (2013) Novel universal statistic for computing upper limits in an ill-behaved background. Phys Rev D 87(6):062001. https://doi.org/10.1103/PhysRevD.87.062001. arXiv:1208.2007 [gr-qc] Dergachev V (2018) Loosely coherent searches for medium scale coherence lengths. arXiv:1807.02351 [astro-ph.IM] Dergachev V, Papa MA (2019) Sensitivity improvements in the search for periodic gravitational waves using O1 LIGO data. Phys Rev Lett 123:101101. https://doi.org/10.1103/PhysRevLett.123.101101 Dergachev V, Papa MA (2020a) Results from an extended falcon all-sky survey for continuous gravitational waves. Phys Rev D 101(2):022001. https://doi.org/10.1103/PhysRevD.101.022001. arXiv:1909.09619 [gr-qc] Dergachev V, Papa MA (2020b) Results from the first all-sky search for continuous gravitational waves from small-ellipticity sources. Phys Rev Lett 125(17):171101. https://doi.org/10.1103/physrevlett.125.171101 Dergachev V, Papa MA (2021a) Results from high-frequency all-sky search for continuous gravitational waves from small-ellipticity sources. Phys Rev D 103:063019. https://doi.org/10.1103/PhysRevD.103.063019 Dergachev V, Papa MA (2021b) Search for continuous gravitational waves from small-ellipticity sources at low frequencies. Phys Rev D 104(4):043003. https://doi.org/10.1103/physrevd.104.043003 Dergachev V, Papa MA (2022) A frequency resolved atlas of the sky in continuous gravitational waves. arXiv:2202.10598 [gr-qc] Dergachev V, Riles K (2005) PowerFlux polarization analysis, LIGO Report LIGO-T050187 Dergachev V, Papa MA, Steltner B, Eggenstein HB (2019) Loosely coherent search in LIGO O1 data for continuous gravitational waves from Terzan 5 and the Galactic Center. Phys Rev D 99:084048. https://doi.org/10.1103/PhysRevD.99.084048 Dhurandhar S, Krishnan B, Mukhopadhyay H, Whelan JT (2008) Cross-correlation search for periodic gravitational waves. Phys Rev D 77:082001. https://doi.org/10.1103/PhysRevD.77.082001. arXiv:0712.1578 [gr-qc] Dhurandhar S, Krishnan B, Willis JL (2017) Marginalizing the likelihood function for modeled gravitational wave searches. arXiv:1707.08163 [gr-qc] Dirichlet GL (1829) Sur la convergence des séries trigonométriques qui servent à représenter une fonction arbitraire entre des limites données. J Math 1829:157–169. https://doi.org/10.1515/crll.1829.4.157 Doneva DD, Kokkotas KD, Pnigouras P (2015) Gravitational wave afterglow in binary neutron star mergers. Phys Rev D 92:104040. https://doi.org/10.1103/PhysRevD.92.104040 Dreissigacker C, Prix R (2020) Deep-learning continuous gravitational waves: multiple detectors and realistic noise. Phys Rev D 102:2. https://doi.org/10.1103/physrevd.102.022005 Dreissigacker C, Prix R, Wette K (2018) Fast and accurate sensitivity estimation for continuous-gravitational-wave searches. Phys Rev D 98(8):084058. https://doi.org/10.1103/PhysRevD.98.084058. arXiv:1808.02459 [gr-qc] Dreissigacker C, Sharma R, Messenger C, Zhao R, Prix R (2019) Deep-learning continuous gravitational waves. Phys Rev D 100:044009. https://doi.org/10.1103/PhysRevD.100.044009 Driggers JC, Vitale S, Lundgren AP, Evans M, Kawabe K, Dwyer SE, Izumi K, Schofield RMS, Effler A, Sigg D et al (2019) Improving astrophysical parameter estimation via offline noise subtraction for advanced LIGO. Phys Rev D 99:4. https://doi.org/10.1103/physrevd.99.042001 Dunn L, Clearwater P, Melatos A, Wette K (2021) Graphics processing unit implementation of the F-statistic for continuous gravitational wave searches. Class Quantum Grav. https://doi.org/10.1088/1361-6382/ac4616 Dupuis RJ, Woan G (2005) Bayesian estimation of pulsar parameters from gravitational wave data. Phys Rev D 72:102002. https://doi.org/10.1103/PhysRevD.72.102002. arXiv:gr-qc/0508096 Einstein A (1916) Näherungsweise Integration der Feldgleichungen der Gravitation. Sitzungber K Preuss Akad Wiss 1:688 Einstein A (1918) Über Gravitationswellen. Sitzungber K Preuss Akad Wiss 1:154 Ertan U, Alpar MA (2021) The minimum rotation period of millisecond pulsars. Mon Not R Astronom Soc Lett 505(1):L112–L114. https://doi.org/10.1093/mnrasl/slab060 Espinoza CM, Lyne AG, Kramer M, Manchester RN, Kaspi VM (2011) The braking index of PSR J1734–3333 and the magnetar population. Astrophys J 741(1):L13. https://doi.org/10.1088/2041-8205/741/1/l13 Espinoza CM, Lyne AG, Stappers BW (2017) New long-term braking index measurements for glitching pulsars using a glitch-template method. Mon Not R Astron Soc 466(1):147–162. https://doi.org/10.1093/mnras/stw3081. arXiv:1611.08314 [astro-ph.HE] Essick R, Landry P, Holz DE (2020) Nonparametric inference of neutron star composition, equation of state, and maximum mass with GW170817. Phys Rev D 101(6):063007. https://doi.org/10.1103/PhysRevD.101.063007. arXiv:1910.09740 [astro-ph.HE] Fattoyev FJ, Horowitz CJ, Lu H (2018) Crust breaking and the limiting rotational frequency of neutron stars. arXiv:1804.04952 [astro-ph.HE] Ferdman RD, Archibald RF, Kaspi VM (2015) Long-term timing and emission behavior of the young crab-like pulsar PSR B0540-69. Astrophys J 812(2):95. https://doi.org/10.1088/0004-637X/812/2/95. arXiv:1506.00182 [astro-ph.SR] Ferdman RD, Archibald RF, Gourgouliatos KN, Kaspi VM (2018) The glitches and rotational history of the highly energetic young pulsar PSR J0537\(-\)6910. Astrophys J 852(2):123. https://doi.org/10.3847/1538-4357/aaa198. arXiv:1708.08876 [astro-ph.HE] Ferrand G, Safi-Harb S (2012) A census of high-energy observations of Galactic supernova remnants. Adv Space Res 49(9):1313–1319. https://doi.org/10.1016/j.asr.2012.02.004 Fesen RA, Hammell MC, Morse J, Chevalier RA, Borkowski KJ, Dopita MA, Gerardy CL, Lawrence SS, Raymond JC, van den Bergh S (2006) The expansion asymmetry and age of the Cassiopeia A Supernova Remnant. Astrophys J 645(1):283–292. https://doi.org/10.1086/504254 Fesik L, Papa MA (2020) First search for r-mode gravitational waves from PSR J0537-6910. Astrophys J 895(1):11. https://doi.org/10.3847/1538-4357/ab8193 Fomalont EB, Geldzahler BJ, Bradshaw CF (2001) Scorpius X-1: the evolution and nature of the twin compact radio lobes. Astrophys J 558(1):283–301. https://doi.org/10.1086/322479 Fonseca E, Cromartie HT, Pennucci TT, Ray PS, Kirichenko AY, Ransom SM, Demorest PB, Stairs IH, Arzoumanian Z, Guillemot L, Parthasarathy A, Kerr M, Cognard I, Baker PT, Blumer H, Brook PR, DeCesar M, Dolch T, Dong FA, Ferrara EC, Fiore W, Garver-Daniels N, Good DC, Jennings R, Jones ML, Kaspi VM, Lam MT, Lorimer DR, Luo J, McEwen A, McKee JW, McLaughlin MA, McMann N, Meyers BW, Naidu A, Ng C, Nice DJ, Pol N, Radovan HA, Shapiro-Albert B, Tan CM, Tendulkar SP, Swiggum JK, Wahl HM, Zhu WW (2021) Refined mass and geometric measurements of the high-mass PSR J0740+6620. Astrophys J Lett 915(1):L12. https://doi.org/10.3847/2041-8213/ac03b8. arXiv:2104.00880 [astro-ph.HE] Freire PCC (2012) The pulsar population in globular clusters and in the galaxy. Proc Int Astron Union 8(S291):243–250. https://doi.org/10.1017/s1743921312023770 Freire PCC, et al (2017) Long-term observations of the pulsars in 47 Tucanae—II. Proper motions, accelerations and jerks. Mon Not R Astron Soc 471(1):857–876. https://doi.org/10.1093/mnras/stx1533. arXiv:1706.04908 [astro-ph.HE] Freise A, Strain K (2010) Interferometer techniques for gravitational-wave detection. Living Rev Rel 13:1. https://doi.org/10.12942/lrr-2010-1. arXiv:0909.3661 [gr-qc] Friedman JL, Morsink SM (1998) Axial instability of rotating relativistic stars. Astrophys J 502:714–720. https://doi.org/10.1086/305920. arXiv:gr-qc/9706073 Friedman JL, Schutz BF (1978) Secular instability of rotating Newtonian stars. Astrophys J 222:281–296. https://doi.org/10.1086/156143 Fruchter AS, Stinebring DR, Taylor JH (1988) A millisecond pulsar in an eclipsing binary. Nature 333(6170):237–239. https://doi.org/10.1038/333237a0 Gaensler BM, Slane PO (2006) The evolution and structure of pulsar wind nebulae. Ann Rev Astron Astrophys 44:17–47. https://doi.org/10.1146/annurev.astro.44.051905.092528. arXiv:astro-ph/0601081 Galaudage S, Wette K, Galloway DK, Messenger C (2021) Deep searches for X-ray pulsations from Scorpius X-1 and Cygnus X-2 in support of continuous gravitational wave searches. Mon Not R Astron Soc 509(2):1745–1754. https://doi.org/10.1093/mnras/stab3095 Galloway DK, Muno MP, Hartman JM, Psaltis D, Chakrabarty D (2008) Thermonuclear (type I) X-ray bursts observed by the Rossi X-ray timing explorer. Astrophys J Suppl 179(2):360–422. https://doi.org/10.1086/592044 Gao Y, Shao L, Xu R, Sun L, Liu C, Xu RX (2020) Triaxially deformed freely precessing neutron stars: continuous electromagnetic and gravitational radiation. Mon Not R Astron Soc 498(2):1826–1838. https://doi.org/10.1093/mnras/staa2476 Gáspár A, Rieke GH (2020) New HST data and modeling reveal a massive planetesimal collision around Fomalhaut. Proc Natl Acad Sci 117(18):9712–9722. https://doi.org/10.1073/pnas.1912506117 Geppert U, Page D, Zannias T (1999) Submergence and re-diffusion of the neutron star magnetic field after the supernova. Astron Astrophys 345:847–854 Ghosh P, Lamb FK (1979) Accretion by rotating magnetic neutron stars. III. Accretion torques and period changes in pulsating X-ray sources. Astrophys J 234:296–316. https://doi.org/10.1086/157498 Ghosh S, Berti E, Brito R, Richartz M (2019) Follow-up signals from superradiant instabilities of black hole merger remnants. Phys Rev D 99(10):104030. https://doi.org/10.1103/PhysRevD.99.104030. arXiv:1812.01620 [gr-qc] Giliberti E, Cambiotti G (2022) Starquakes in millisecond pulsars and gravitational waves emission. Mon Not R Astron Soc 511(3):3365–3376. https://doi.org/10.1093/mnras/stac245 Gittins F, Andersson N, Jones DI (2020) Modelling neutron star mountains. Mon Not R Astron Soc 500(4):5570–5582. https://doi.org/10.1093/mnras/staa3635. arXiv:2009.12794 [astro-ph.HE] Glampedakis K, Gualtieri L (2018) Gravitational waves from single neutron stars: an advanced detector era survey. In: Rezzolla L, Pizzochero P, Jones DI, Rea N, Vidaña I (eds) The physics and astrophysics of neutron stars. Astrophysics and Space Science Library, vol 457. Springer, pp 673–736. https://doi.org/10.1007/978-3-319-97616-7_12. arXiv:1709.07049 [astro-ph.HE] Goetz E, Riles K (2011) An all-sky search algorithm for continuous gravitational waves from spinning neutron stars in binary systems. Class Quantum Grav 28(21):215006. https://doi.org/10.1088/0264-9381/28/21/215006 Goetz E, Riles K (2016) Coherently combining data between detectors for all-sky semi-coherent continuous gravitational wave searches. Class Quantum Grav 33(8):085007. https://doi.org/10.1088/0264-9381/33/8/085007 Goetz E, et al (2021) Subtracting Narrow-band Noise from LIGO strain data in the third observing run. Technical Report LIGO Report T2100200, LIGO. https://dcc.ligo.org/T2100200 Gold T (1968) Rotating neutron stars as the origin of the pulsating radio sources. Nature 218(5143):731–732. https://doi.org/10.1038/218731a0 Goldreich P, Julian WH (1969) Pulsar electrodynamics. Astrophys J 157:869. https://doi.org/10.1086/150119 Goncharov B, Thrane E (2018) All-sky radiometer for narrowband gravitational waves using folded data. Phys Rev D 98:064018. https://doi.org/10.1103/PhysRevD.98.064018 Gotthelf EV, Halpern JP (2009) Discovery of a highly energetic X-ray pulsar powering HESS J1813–178 in the Young Supernova Remnant G1.282–0.02. Astrophys J 700(2):158–161. https://doi.org/10.1088/0004-637x/700/2/l158 Gottlieb EW, Wright EL, Liller W (1975) Optical studies of UHURU sources. XI. A probable period for Scorpius X-1 = V818 Scorpii. Astrophys J Lett 195:L33–L35. https://doi.org/10.1086/181703 Greco E et al (2022) Additional evidence for a pulsar wind nebula in the heart of SN 1987A from Multiepoch X-ray data and MHD modeling. Astrophys J 931(2):132. https://doi.org/10.3847/1538-4357/ac679d. arXiv:2204.06804 [astro-ph.HE] Green DA (2014) A catalogue of 294 Galactic supernova remnants. Bull Astron Soc India 42:47 arXiv:1409.0637 [astro-ph.HE] Grote H, Stadnik YV (2019) Novel signatures of dark matter in laser-interferometric gravitational-wave detectors. Phys Rev Res 1(3):033187. https://doi.org/10.1103/PhysRevResearch.1.033187. arXiv:1906.06193 [astro-ph.IM] Guilet J, Müller E (2015) Numerical simulations of the magnetorotational instability in protoneutron stars-I. Influence of buoyancy. Mon Not R Astron Soc 450(2):2153–2171. https://doi.org/10.1093/mnras/stv727 Guo HK, Riles K, Yang FW, Zhao Y (2019) Searching for dark photon dark matter in LIGO O1 data. Commun Phys. https://doi.org/10.1038/s42005-019-0255-0 Gusakov ME, Chugunov AI, Kantor EM (2014) Instability windows and evolution of rapidly rotating neutron stars. Phys Rev Lett 112(15):151101. https://doi.org/10.1103/PhysRevLett.112.151101. arXiv:1310.8103 [astro-ph.HE] Halpern JP, Gotthelf EV (2009) Spin-down Measurement of PSR J1852+0040 in Kesteven 79: central compact objects as anti-magnetars. Astrophys J 709(1):436–446. https://doi.org/10.1088/0004-637x/709/1/436 Harding AK, Contopoulos I, Kazanas D (1999) Magnetar spin-down. Astrophys J 525(2):L125–L128. https://doi.org/10.1086/312339 Haskell B, Patruno A (2011) Spin equilibrium with or without gravitational wave emission: the case of XTE J1814–338 and SAX J1808.4–365.8. Astrophys J Lett 738:L14. https://doi.org/10.1088/2041-8205/738/1/L14 Haskell B, Patruno A (2017) Are gravitational waves spinning down PSR J1023\(+\)0038? Phys Rev Lett 119(16):161103. https://doi.org/10.1103/PhysRevLett.119.161103. arXiv:1703.08374 [astro-ph.HE] Haskell B, Priymak M, Patruno A, Oppenoorth M, Melatos A, Lasky PD (2015) Detecting gravitational waves from mountains on neutron stars in the advanced detector era. Mon Not R Astron Soc 450(3):2393–2403. https://doi.org/10.1093/mnras/stv726. arXiv:1501.06039 [astro-ph.SR] Haskell B, Antonelli M, Pizzochero P (2022) Continuous gravitational wave emissions from neutron stars with pinned superfluids in the core. Universe 8(12):619. https://doi.org/10.3390/universe8120619. arXiv:2211.15507 [astro-ph.HE] Hessels JWT, Ransom SM, Stairs IH, Freire PCC, Kaspi VM, Camilo F (2006) A radio pulsar spinning at 716 Hz. Science 311(5769):1901–1904. https://doi.org/10.1126/science.1123430 Hewish AR, Bell SJ, Pilkington J, Scott P, Collins R (1968) Observation of a rapidly pulsating radio source. Nature. https://doi.org/10.1038/217709a0 Heyl JS (2002) Low-mass X-ray binaries may be important laser interferometer gravitational-wave observatory sources after all. Astrophys J Lett 574(1):L57–L60. https://doi.org/10.1086/342263 Hirakawa H, Tsubono K, Fujimoto MK (1978) Search for gravitational radiation from the crab pulsar. Phys Rev D 17:1919–1923. https://doi.org/10.1103/PhysRevD.17.1919 Ho WCG (2011) Evolution of a buried magnetic field in the central compact object neutron stars. Mon Not R Astron Soc 414(3):2567–2575. https://doi.org/10.1111/j.1365-2966.2011.18576.x. arXiv:1102.4870 [astro-ph.HE] Ho WCG (2015) Magnetic field growth in young glitching pulsars with a braking index. Mon Not R Astron Soc 452(1):845–851. https://doi.org/10.1093/mnras/stv1339. arXiv:1506.03933 [astro-ph.SR] Ho WCG (2016) Gravitational waves within the magnetar model of superluminous supernovae and gamma-ray bursts. Mon Not R Astron Soc 463(1):489–494. https://doi.org/10.1093/mnras/stw2016. arXiv:1606.00454 [astro-ph.HE] Ho WCG, Andersson N (2012) Rotational evolution of young pulsars due to superfluid decoupling. Nat Phys 8(11):787–789. https://doi.org/10.1038/nphys2424. arXiv:1208.3201 [astro-ph.SR] Ho WCG, Heinke CO, Chugunov AI (2019) XMM-Newton detection and spectrum of the second fastest spinning pulsar PSR J0952–0607. Astrophys J 882(2):128. https://doi.org/10.3847/1538-4357/ab3578. arXiv:1905.12001 [astro-ph.HE] Ho WCG, Espinoza CM, Arzoumanian Z, Enoto T, Tamba T, Antonopoulou D, Bejger M, Guillot S, Haskell B, Ray PS (2020) Return of the big Glitcher: NICER timing and glitches of PSR J0537–6910. Mon Not R Astron Soc 498(4):4605–4614. https://doi.org/10.1093/mnras/staa2640. arXiv:2009.00030 [astro-ph.HE] Ho WCG, Zhao Y, Heinke CO, Kaplan DL, Shternin PS, Wijngaarden MJP (2021) X-ray bounds on cooling, composition, and magnetic field of the Cassiopeia A neutron star and young central compact objects. Mon Not R Astron Soc 506(4):5015–5029. https://doi.org/10.1093/mnras/stab2081 Hobbs GB, Edwards RT, Manchester RN (2006) TEMPO2, a new pulsar-timing package-I. An overview. Mon Not R Astron Soc 369(2):655–672. https://doi.org/10.1111/j.1365-2966.2006.10302.x Horowitz CJ, Kadau K (2009) Breaking strain of neutron star crust and gravitational waves. Phys Rev Lett 102:191102. https://doi.org/10.1103/PhysRevLett.102.191102 Horowitz CJ, Papa MA, Reddy S (2020) Search for compact dark matter objects in the solar system with LIGO data. Phys Lett B 800:135072. https://doi.org/10.1016/j.physletb.2019.135072 Hough PVC (1959) Machine analysis of bubble chamber pictures. Conf Proc 590914:554–558 Hough PVC (1962) Method and means for recognizing complex patterns. U.S. Patent 3,069,654 Hoyle F, Lyttleton RA (1939) The effect of interstellar matter on climatic variation. Proc Camb Philos Soc 35(3):405. https://doi.org/10.1017/S0305004100021150 Hughes DW (1980) Did Flamsteed see the Cassiopeia A supernova? Nature 285(5761):132–133. https://doi.org/10.1038/285132a0 Hutchins TJ, Jones DI (2022) Gravitational radiation from thermal mountains on accreting neutron stars: sources of temperature non-axisymmetry. arXiv:2212.07452 [astro-ph.HE] Huth S, Pang PTH, Tews I, Dietrich T, Le Fèvre A, Schwenk A, Trautmann W, Agarwal K, Bulla M, Coughlin MW, Van Den Broeck C (2022) Constraining neutron-star matter with microscopic and macroscopic collisions. Nature 606(7913):276–280. https://doi.org/10.1038/s41586-022-04750-w Idrisy A, Owen BJ, Jones DI (2015) R-mode frequencies of slowly rotating relativistic neutron stars with realistic equations of state. Phys Rev D. https://doi.org/10.1103/physrevd.91.024001 Intini G, Leaci P, Astone P, D’Antonio S, Frasca S, La Rosa I, Miller A, Palomba C, Piccinni O (2020) A Doppler-modulation based veto to discard false continuous gravitational-wave candidates. Class Quant Grav 37(22):225007. https://doi.org/10.1088/1361-6382/abac43 Intini G, Leaci P, Astone P, D’Antonio S, Frasca S, La Rosa I, Miller A, Palomba C, Piccinni O (2020) A Doppler-modulation based veto to discard false continuous gravitational-wave candidates. Class Quant Grav 37(22):225007. https://doi.org/10.1088/1361-6382/abac43 Isi M, Weinstein AJ, Mead C, Pitkin M (2015) Detecting beyond-Einstein polarizations of continuous gravitational waves. Phys Rev D 91:082002. https://doi.org/10.1103/PhysRevD.91.082002 Isi M, Sun L, Brito R, Melatos A (2019) Directed searches for gravitational waves from ultralight bosons. Phys Rev D 99:084042. https://doi.org/10.1103/PhysRevD.99.084042 Isi M, Mastrogiovanni S, Pitkin M, Piccinni OJ (2020) Establishing the significance of continuous gravitational-wave detections from known pulsars. Phys Rev D 102(12):123027. https://doi.org/10.1103/PhysRevD.102.123027. arXiv:2010.12612 [gr-qc] Iyudin AF, Schönfelder V, Bennett K, Bloemen H, Diehl R, Hermsen W, Lichti GG, van der Meulen RD, Ryan J, Winkler C (1998) Emission from \(^{44}\)Ti associated with a previously unknown Galactic supernova. Nature 396(6707):142–144. https://doi.org/10.1038/24106 Jaranowski P, Królak A (1999) Data analysis of gravitational-wave signals from spinning neutron stars. ii. accuracy of estimation of parameters. Phys Rev D 59:063003. https://doi.org/10.1103/PhysRevD.59.063003 Jaranowski P, Królak A (2009) Analysis of gravitational-wave data. Cambridge University Press, Cambridge Jaranowski P, Królak A (2010) Searching for gravitational waves from known pulsars using the \(F\) and \(G\) statistics. Class Quantum Grav 27(19):194015. https://doi.org/10.1088/0264-9381/27/19/194015 Jaranowski P, Królak A, Schutz BF (1998) Data analysis of gravitational-wave signals from spinning neutron stars. 1. The signal and its detection. Phys Rev D 58:063001. https://doi.org/10.1103/PhysRevD.58.063001 Jasiulek M, Chirenti C (2017) R-mode frequencies of rapidly and differentially rotating relativistic neutron stars. Phys Rev D 95(6):064060. https://doi.org/10.1103/PhysRevD.95.064060. arXiv:1611.07924 [gr-qc] Johnson-McDaniel NK, Owen BJ (2013) Maximum elastic deformations of relativistic stars. Phys Rev D 88:044004. https://doi.org/10.1103/PhysRevD.88.044004. arXiv:1208.5227 [astro-ph.SR] Johnston S, Karastergiou A (2017) Pulsar braking and the P-\({{\dot{P}}}\) diagram. Mon Not R Astron Soc 467(3):3493–3499. https://doi.org/10.1093/mnras/stx377. arXiv:1702.03616 [astro-ph.HE] Jones DI (2010) Gravitational wave emission from rotating superfluid neutron stars. Mon Not R Astron Soc 402(4):2503–2519. https://doi.org/10.1111/j.1365-2966.2009.16059.x. arXiv:0909.4035 [astro-ph.SR] Jones DI (2015) Parameter choices and ranges for continuous gravitational wave searches for steadily spinning neutron stars. Mon Not R Astron Soc 453(1):53–66. https://doi.org/10.1093/mnras/stv1584 Jones DI (2022) Learning from the frequency content of continuous gravitational wave signals. In: Vasconcellos CAZ (ed) Astrophysics in the XXI century with compact stars. World Scientific, pp 201–217. https://doi.org/10.1142/9789811220944_0006. arXiv:2111.08561 [astro-ph.HE] Jones DI, Andersson N (2001) Freely precessing neutron stars: model and observations. Mon Not R Astron Soc 324(4):811–824. https://doi.org/10.1046/j.1365-8711.2001.04251.x Jones DI, Andersson N (2002) Gravitational waves from freely precessing neutron stars. Mon Not R Astron Soc 331(1):203–220. https://doi.org/10.1046/j.1365-8711.2002.05180.x Jones D, Sun L (2021) Search for continuous gravitational waves from Fomalhaut b in the second Advanced LIGO observing run with a hidden Markov model. Phys Rev D 103:023020. https://doi.org/10.1103/PhysRevD.103.023020 Jones DI, Owen B, Whitbeck D (2005) Parameter space metric for combined diurnal and orbital motion. Technical Report. LIGO-T0900500-v1, LIGO Jones D, Sun L, Carlin J, Dunn L, Millhouse M, Middleton H, Meyers P, Clearwater P, Beniwal D, Strang L, Vargas A, Melatos A (2022) Validating continuous gravitational-wave candidates from a semicoherent search using doppler modulation and an effective point spread function. Phys Rev D 106:123011. https://doi.org/10.1103/PhysRevD.106.123011. arXiv:2203.14468 [gr-qc] Jordana-Mitjans N, Mundell CG, Guidorzi C, Smith RJ, Ramírez-Ruiz E, Metzger BD, Kobayashi S, Gomboc A, Steele IA, Shrestha M, Marongiu M, Rossi A, Rothberg B (2022) A short gamma-ray burst from a protomagnetar remnant. Astrophys J 939(2):106. https://doi.org/10.3847/1538-4357/ac972b Kalas P, Graham JR, Chiang E, Fitzgerald MP, Clampin M, Kite ES, Stapelfeldt K, Marois C, Krist J (2008) Optical images of an exosolar planet 25 light-years from earth. Science 322(5906):1345–1348. https://doi.org/10.1126/science.1166609 Kantor EM, Gusakov ME, Dommes VA (2020) Constraining neutron superfluidity with \(r\)-mode physics. Phys Rev Lett 125(15):151101. https://doi.org/10.1103/PhysRevLett.125.151101. arXiv:2009.12553 [astro-ph.HE] Kargaltsev O, Pavlov GG, Sanwal D, Garmire GP (2002) The compact central object in the Supernova Remnant G266.2-1.2. Astrophys J 580(2):1060–1064. https://doi.org/10.1086/343852. arXiv:astro-ph/0207602 [astro-ph] Kashiyama K, Murase K, Bartos I, Kiuchi K, Margutti R (2016) Multi-messenger tests for fast-spinning newborn pulsars embedded in stripped-envelope supernovae. Astrophys J 818(1):94. https://doi.org/10.3847/0004-637X/818/1/94. arXiv:1508.04393 [astro-ph.HE] Keitel D (2016) Robust semicoherent searches for continuous gravitational waves with noise and signal models including hours to days long transients. Phys Rev D 93:084024. https://doi.org/10.1103/PhysRevD.93.084024 Keitel D, Ashton G (2018) Faster search for long gravitational-wave transients: GPU implementation of the transient \({\cal{F} }\)-statistic. Class Quantam Grav 35(20):205003. https://doi.org/10.1088/1361-6382/aade34. arXiv:1805.05652 [astro-ph.IM] Keitel D, Prix R (2015) Line-robust statistics for continuous gravitational waves: safety in the case of unequal detector sensitivities. Class Quantum Grav 32(3):035004. https://doi.org/10.1088/0264-9381/32/3/035004 Keitel D, Prix R, Papa MA, Leaci P, Siddiqi M (2014) Search for continuous gravitational waves: Improving robustness versus instrumental artifacts. Phys Rev D 89:064023. https://doi.org/10.1103/PhysRevD.89.064023 Keitel D, Woan G, Pitkin M, Schumacher C, Pearlstone B, Riles K, Lyne AG, Palfreyman J, Stappers B, Weltevrede P (2019) First search for long-duration transient gravitational waves after glitches in the Vela and Crab pulsars. Phys Rev D 100(6):064058. https://doi.org/10.1103/PhysRevD.100.064058. arXiv:1907.04717 [gr-qc] Keitel D, Tenorio R, Ashton G, Prix R (2021) PyFstat: a python package for continuous gravitational-wave data analysis. J Open Source Softw 6(60):3000. https://doi.org/10.21105/joss.03000 Kerin AD, Melatos A (2022) Mountain formation by repeated, inhomogeneous crustal failure in a neutron star. Mon Not R Astron Soc 514(2):1628–1644. https://doi.org/10.1093/mnras/stac1351 Knispel B, Allen B (2008) Blandford’s argument: the strongest continuous gravitational wave signal. Phys Rev D 78:044031. https://doi.org/10.1103/PhysRevD.78.044031 Kojima Y (1998) Quasitoroidal oscillations in rotating relativistic stars. Mon Not R Astron Soc 293:49–52. https://doi.org/10.1046/j.1365-8711.1998.01119.x. arXiv:gr-qc/9709003 Konno K, Obata T, Kojima Y (1999) Deformation of relativistic magnetized stars. Astron Astrophys 352:211–216 arXiv:gr-qc/9910038 Kramer M, Stappers B (2015) Pulsar Science with the SKA. In: Proceedings of advancing astrophysics with the square kilometre array—PoS(AASKA14). vol 215. SISSA, p 036. https://doi.org/10.22323/1.215.0036. arXiv:1507.04423 [astro-ph.IM] Krastev PG, Li BA, Worley A (2008) Nuclear limits on gravitational waves from elliptically deformed pulsars. Phys Lett B 668:1–5. https://doi.org/10.1016/j.physletb.2008.07.105. arXiv:0805.1973 [astro-ph] Krishnan B, Sintes AM, Papa MA, Schutz BF, Frasca S, Palomba C (2004) Hough transform search for continuous gravitational waves. Phys Rev D 70:082001. https://doi.org/10.1103/PhysRevD.70.082001 Kuwahara N, Asada H (2022) Earth rotation and time-domain reconstruction of polarization states for continuous gravitational waves from known pulsars. Phys Rev D 106:024051. https://doi.org/10.1103/PhysRevD.106.024051. arXiv:2202.00171 [gr-qc] La Rosa I, Astone P, D’Antonio S, Frasca S, Leaci P, Miller AL, Palomba C, Piccinni OJ, Pierini L, Regimbau T (2021) Continuous gravitational-wave data analysis with general purpose computing on graphic processing units. Universe 7(7):218. https://doi.org/10.3390/universe7070218 Lander SK (2014) The contrasting magnetic fields of superconducting pulsars and magnetars. Mon Not R Astron Soc 437(1):424–436. https://doi.org/10.1093/mnras/stt1894. arXiv:1307.7020 [astro-ph.HE] Lander SK, Andersson N, Glampedakis K (2011) Magnetic neutron star equilibria with stratification and type-II superconductivity. Mon Not R Astron Soc 419:732. https://doi.org/10.1111/j.1365-2966.2011.19720.x. arXiv:1106.6322 [astro-ph.SR] Large MI, Vaughan AE, Mills BY (1968) A pulsar Supernova association? Nature 220(5165):340–341. https://doi.org/10.1038/220340a0 Lasky PD (2015) Gravitational waves from neutron stars: a review. Pubs Astron Soc Aust 32:e034. https://doi.org/10.1017/pasa.2015.35. arXiv:1508.06643 [astro-ph.HE] Lasky PD, Leris C, Rowlinson A, Glampedakis K (2017a) The braking index of millisecond magnetars. Astrophys J Lett 843(1):L1. https://doi.org/10.3847/2041-8213/aa79a7 Lasky PD, Sarin N, Sammut L (2017b) Long-duration waveform models for millisecond magnetars born in binary neutron star mergers. Technical Report LIGO Report T1700408, LIGO. https://dcc.ligo.org/T1700408 Lattimer JM, Prakash M (2001) Neutron star structure and the equation of state. Astrophys J 550(1):426–442. https://doi.org/10.1086/319702 Lazio TJW, Cordes JM (1998) Hyperstrong radio-wave scattering in the galactic center. I. A survey for extragalactic sources seen through the galactic center. Astrophys J Suppl 118:201. https://doi.org/10.1086/313129 Leaci P (2015) Methods to filter out spurious disturbances in continuous-wave searches from gravitational-wave detectors. Phys Scr 90(12):125001. https://doi.org/10.1088/0031-8949/90/12/125001 Leaci P, Prix R (2015) Directed searches for continuous gravitational waves from binary systems: parameter-space metrics and optimal Scorpius X-1 sensitivity. Phys Rev D 91(10):102003. https://doi.org/10.1103/PhysRevD.91.102003. arXiv:1502.00914 [gr-qc] Lee U (2014) Excitation of a non-radial mode in a millisecond X-ray pulsar XTE J1751–305. Mon Not R Astron Soc 442(4):3037–3043. https://doi.org/10.1093/mnras/stu1077. arXiv:1403.3476 [astro-ph.HE] Levin Y (1999) Runaway heating by R modes of neutron stars in low mass x-ray binaries. Astrophys J 517:328. https://doi.org/10.1086/307196. arXiv:astro-ph/9810471 Levine J, Stebbins R (1972) Upper limit on the gravitational flux reaching the earth from the crab pulsar. Phys Rev D 6:1465–1468. https://doi.org/10.1103/PhysRevD.6.1465 LIGO Scientific Collaboration (2018) LIGO algorithm Library-LALSuite. free software (GPL). https://doi.org/10.7935/GT1W-FZ16 Lim Y, Holt JW (2019) Bayesian modeling of the nuclear equation of state for neutron star tidal deformabilities and GW170817. Eur Phys J A. https://doi.org/10.1140/epja/i2019-12917-9 Lindblom L, Detweiler SL (1977) On the secular instabilities of the Maclaurin spheroids. Astrophys J 211:565–567. https://doi.org/10.1086/154964 Lindblom L, Mendell G (1995) Does gravitational radiation limit the angular velocities of superfluid neutron stars? Astrophys J 444:804. https://doi.org/10.1086/175653 Lindblom L, Owen BJ (2020) Directed searches for continuous gravitational waves from twelve supernova remnants in data from Advanced LIGO’s second observing run. Phys Rev D 101(8):083023. https://doi.org/10.1103/PhysRevD.101.083023. arXiv:2003.00072 [gr-qc] Liu Y, Zou YC (2022) Directed search for continuous gravitational waves from the possible kilonova remnant G4.+6. Phys Rev D 106(12):123024. https://doi.org/10.1103/PhysRevD.106.123024 Livas J (1989) Broadband search techniques for periodic sources of gravitational radiation. In: Schutz BF (ed) Gravitational wave data analysis. NATO ASI series C, vol 253. Springer, Dordrecht, pp 217–238. https://doi.org/10.1007/978-94-009-1185-7 Livingstone MA, Kaspi VM (2011) Long-term X-ray monitoring of the young pulsar PSR B1509–58. Astrophys J 742:31. https://doi.org/10.1088/0004-637X/742/1/31. arXiv:1110.1312 [astro-ph.HE] Livingstone MA, Kaspi VM, Gavriil FP, Manchester RN, Gotthelf EV, Kuiper L (2007) New phase-coherent measurements of pulsar braking indices. Astrophys Space Sci 308:317–323. https://doi.org/10.1007/s10509-007-9320-3. arXiv:astro-ph/0702196 Lorimer DR (2008) Binary and millisecond pulsars. Living Rev Relativ 11:80. https://doi.org/10.12942/lrr-2008-8 Lorimer DR, Kramer M (2005) Handbook of pulsar astronomy. Cambridge University Press, Cambridge Lower ME, Johnston S, Dunn L, Shannon RM, Bailes M, Dai S, Kerr M, Manchester RN, Melatos A, Oswald LS, Parthasarathy A, Sobey C, Weltevrede P (2021) The impact of glitches on young pulsar rotational evolution. Mon Not R Astron Soc 508(3):3251–3274. https://doi.org/10.1093/mnras/stab2678 Lu N, Wette K, Scott SM, Melatos A (2023) Inferring neutron star properties with continuous gravitational waves. Mon Not R Astron Soc https://doi.org/10.1093/mnras/stad390. arXiv:2209.10981 [gr-qc] Lyne A, Graham-Smith F (2006) Pulsar astronomy, 3rd edn. Cambridge University Press, Cambridge Lyne A, Jordan C, Graham-Smith F, Espinoza C, Stappers B, Weltrvrede P (2015) 45 years of rotation of the Crab pulsar. Mon Not R Astron Soc 446:857–864. https://doi.org/10.1093/mnras/stu2118. arXiv:1410.0886 [astro-ph.HE] Macquart JP, Kanekar N (2015) On detecting millisecond pulsars at the galactic center. Astrophys J 805(2):172. https://doi.org/10.1088/0004-637X/805/2/172. arXiv:1504.02492 [astro-ph.HE] Maggiore M (2008) Gravitational waves, volume 1: theory and experiments. Oxford University Press, Oxford Maggiore M (2018) Gravitational waves, volume 2: astrophysics and cosmology. Oxford University Press, Oxford Maggiore M, Broeck CVD, Bartolo N, Belgacem E, Bertacca D, Bizouard MA, Branchesi M, Clesse S, Foffa S, García-Bellido J et al (2020) Science case for the Einstein telescope. J Cosmol Astropart Phys 03:050–050. https://doi.org/10.1088/1475-7516/2020/03/050 Manchester RN (2012) Detection of gravitational waves using pulsar timing. In: The twelfth Marcel Grossmann meeting. World Scientific, pp 226–240. https://doi.org/10.1142/9789814374552_0011. arXiv:1004.3602 [astro-ph.HE] Manchester RN (2018) Pulsar glitches. In: Weltevrede P, Perera BBP, Preston LL, Sanidas S (eds) Pulsar astrophysics the next fifty years. vol 337, pp 197–202. https://doi.org/10.1017/S1743921317009607. arXiv:1801.04332 [astro-ph.HE] Manchester RN, Hobbs GB (2005) The ATNF pulsar catalogue. A. Teoh & M. Hobbs, Astron J 129, 1993–2006. http://www.atnf.csiro.au/research/pulsar/psrcat/ Mauceli E, McHugh MP, Hamilton WO, Johnson WW, Morse A (2000) Search for periodic gravitational radiation with the ALLEGRO gravitational wave detector. arXiv:gr-qc/0007023 [gr-qc] McClintock JE, Narayan R, Steiner JF (2014) Black hole spin via continuum fitting and the role of spin in powering transient jets. Space Sci Rev 183(1–4):295–322. https://doi.org/10.1007/s11214-013-0003-9. arXiv:1303.1583 [astro-ph.HE] McNolty F (1973) Some probability density functions and their characteristic functions. Math Comput 27(123):495–504 Meadors GD, Kawabe K, Riles K (2014) Increasing LIGO sensitivity by feedforward subtraction of auxiliary length control noise. Class Quantum Grav 31(10):105014. https://doi.org/10.1088/0264-9381/31/10/105014 Meadors GD, Goetz E, Riles K (2016) Tuning into Scorpius X-1: adapting a continuous gravitational-wave search for a known binary system. Class Quantam Grav 33(10):105017. https://doi.org/10.1088/0264-9381/33/10/105017. arXiv:1512.02105 [gr-qc] Meadors GD, Goetz E, Riles K, Creighton T, Robinet F (2017) Searches for continuous gravitational waves from Scorpius X-1 and XTE J1751–305 in LIGO’s sixth science run. Phys Rev D 95:042005. https://doi.org/10.1103/PhysRevD.95.042005 Meadors GD, Krishnan B, Papa MA, Whelan JT, Zhang Y (2018) Resampling to accelerate cross-correlation searches for continuous gravitational waves from binary systems. Phys Rev D 97(4):044017. https://doi.org/10.1103/PhysRevD.97.044017. arXiv:1712.06515 [astro-ph.IM] Melatos A (1997) Spin-down of an oblique rotator with a current-starved outer magnetosphere. Mon Not R Astron Soc 288(4):1049–1059. https://doi.org/10.1093/mnras/288.4.1049 Melatos A, Payne DJB (2005) Gravitational radiation from an accreting millisecond pulsar with a magnetically confined mountain. Astrophys J 623:1044–1050. https://doi.org/10.1086/428600. arXiv:astro-ph/0503287 Melatos A, Douglass JA, Simula TP (2015) Persistent gravitational radiation from glitching pulsars. Astrophys J 807(2):132. https://doi.org/10.1088/0004-637X/807/2/132 Melatos A, Clearwater P, Suvorova S, Sun L, Moran W, Evans RJ (2021) Hidden Markov model tracking of continuous gravitational waves from a binary neutron star with wandering spin. III. tational phase tracking. Phys Rev D 104:042003. https://doi.org/10.1103/PhysRevD.104.042003 Melrose DB, Rafat MZ, Mastrano A (2021) Pulsar radio emission mechanisms: a critique. Mon Not R Astron Soc 500(4):4530–4548. https://doi.org/10.1093/mnras/staa3324. arXiv:2006.15243 [astro-ph.HE] Mendell G, Landry M (2005) StackSlide and Hough search SNR and statistics. Technical Report. LIGO Report T050003, LIGO. https://dcc.ligo.org/T050003 Messenger C, Woan G (2007) A Fast search strategy for gravitational waves from low-mass X-ray binaries. Class Quantam Grav 24:S469–S480. https://doi.org/10.1088/0264-9381/24/19/S10. arXiv:gr-qc/0703155 Messenger C, Bulten HJ, Crowder SG, Dergachev V, Galloway DK, Goetz E, Jonker RJG, Lasky PD, Meadors GD, Melatos A, Premachandra S, Riles K, Sammut L, Thrane EH, Whelan JT, Zhang Y (2015) Gravitational waves from Scorpius X-1: a comparison of search methods and prospects for detection with advanced detectors. Phys Rev D 92:023006. https://doi.org/10.1103/PhysRevD.92.023006 Michel FC (1969) Relativistic stellar-wind torques. Astrophys J 158:727. https://doi.org/10.1086/150233 Michel FC, Li H (1999) Electrodynamics of neutron stars. Phys Rep 318(6):227–297. https://doi.org/10.1016/S0370-1573(99)00002-2 Michel FC, Tucker WH (1969) Pulsar emission mechanism. Nature 223(5203):277–279. https://doi.org/10.1038/223277a0 Middleditch J, Marshall FE, Wang QD, Gotthelf EV, Zhang W (2006) Predicting the starquakes in PSR J0537–6910. Astrophys J 652(2):1531–1546. https://doi.org/10.1086/508736 Middleton H, Clearwater P, Melatos A, Dunn L (2020) Search for gravitational waves from five low mass x-ray binaries in the second Advanced LIGO observing run with an improved hidden Markov model. Phys Rev D. https://doi.org/10.1103/physrevd.102.023006 Miller A, Astone P, D’Antonio S, Frasca S, Intini G, La Rosa I, Leaci P, Mastrogiovanni S, Muciaccia F, Palomba C, Piccinni OJ, Singhal A, Whiting BF (2018) Method to search for long duration gravitational wave transients from isolated neutron stars using the generalized frequency-Hough transform. Phys Rev D 98:102004. https://doi.org/10.1103/PhysRevD.98.102004 Miller AL et al (2019a) How effective is machine learning to detect long transient gravitational waves from neutron stars in a real search? Phys Rev D 100(6):062005. https://doi.org/10.1103/PhysRevD.100.062005. arXiv:1909.02262 [astro-ph.IM] Miller MC et al (2019b) PSR J0030+0451 mass and radius from NICER data and implications for the properties of neutron star matter. Astrophys J 887(1):L24. https://doi.org/10.3847/2041-8213/ab50c5 Miller AL, Clesse S, De Lillo F, Bruno G, Depasse A, Tanasijczuk A (2021a) Probing planetary-mass primordial black holes with continuous gravitational waves. Phys Dark Univ 32:100836. https://doi.org/10.1016/j.dark.2021.100836. arXiv:2012.12983 [astro-ph.HE] Miller AL et al (2021b) Probing new light gauge bosons with gravitational-wave interferometers using an adapted semicoherent method. Phys Rev D 103(10):103002. https://doi.org/10.1103/PhysRevD.103.103002. arXiv:2010.01925 [astro-ph.IM] Miller MC et al (2021c) The Radius of PSR J0740+6620 from NICER and XMM-Newton data. Astrophys J Lett 918(2):L28. https://doi.org/10.3847/2041-8213/ac089b. arXiv:2105.06979 [astro-ph.HE] Miller AL, Aggarwal N, Clesse S, De Lillo F (2022) Constraints on planetary and asteroid-mass primordial black holes from continuous gravitational-wave searches. Phys Rev D 105:062008. https://doi.org/10.1103/PhysRevD.105.062008. arXiv:2110.06188 [gr-qc] Millhouse M, Strang L, Melatos A (2020) Search for gravitational waves from 12 young supernova remnants with a hidden Markov model in Advanced LIGO’s second observing run. Phys Rev D 102:083025. https://doi.org/10.1103/PhysRevD.102.083025 Ming J, Krishnan B, Papa MA, Aulbert C, Fehrmann H (2016) Optimal directed searches for continuous gravitational waves. Phys Rev D 93(6):064011. https://doi.org/10.1103/PhysRevD.93.064011. arXiv:1510.03417 [gr-qc] Ming J, Papa MA, Krishnan B, Prix R, Beer C, Zhu SJ, Eggenstein HB, Bock O, Machenschalk B (2018) Optimally setting up directed searches for continuous gravitational waves in Advanced LIGO O1 data. Phys Rev D 97(2):024051. https://doi.org/10.1103/PhysRevD.97.024051. arXiv:1708.02173 [gr-qc] Ming J et al (2019) Results from an Einstein@Home search for continuous gravitational waves from Cassiopeia A, , Vela Jr. and G347.3. Phys Rev D 100(2):024063. https://doi.org/10.1103/PhysRevD.100.024063 Ming J, Papa MA, Eggenstein HB, Machenschalk B, Steltner B, Prix R, Allen B, Behnke O (2022) Results from an Einstein@Home search for continuous gravitational waves from G347.3 at low frequencies in LIGO O2 data. Astrophys J 925(1):8. https://doi.org/10.3847/1538-4357/ac35cb Misner CW (1972) Interpretation of gravitational-wave observations. Phys Rev Lett 28:994–997. https://doi.org/10.1103/PhysRevLett.28.994 Misner CW, Thorne KS, Wheeler JA (1972) Gravitation. W.H. Freeman, San Francisco Modafferi LM, Moragues J, Keitel D (2021) Search for long-duration transient gravitational waves from glitching pulsars during LIGO-Virgo third observing run. J Phys: Conf Ser 2156(12):012079. https://doi.org/10.1088/1742-6596/2156/1/012079. arXiv:2201.08785 [gr-qc] Moragues J, Modafferi LM, Tenorio R, Keitel D (2023) Prospects for detecting transient quasi-monochromatic gravitational waves from glitching pulsars with current and future detectors. Mon Not R Astron Soc 519(4):5161–5176. https://doi.org/10.1093/mnras/stac3665. arXiv:2210.09907 [astro-ph.HE] Morales JA, Horowitz CJ (2022) Neutron star crust can support a large ellipticity. Mon Not R Astron Soc 517(4):5610–5616. https://doi.org/10.1093/mnras/stac3058. arXiv:2209.03222 [gr-qc] Mösta P, Ott CD, Radice D, Roberts LF, Schnetter E, Haas R (2015) A large-scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae. Nature 528(7582):376–379. https://doi.org/10.1038/nature15755 Mukherjee A, Messenger C, Riles K (2018) Accretion-induced spin-wandering effects on the neutron star in Scorpius X-1: implications for continuous gravitational wave searches. Phys Rev D 97(4):043016. https://doi.org/10.1103/PhysRevD.97.043016. arXiv:1710.06185 [gr-qc] Muno MP, Baganoff FK, Brandt WN, Morris MR, Starck JL (2008) A catalog of diffuse X-ray-emitting features within 20 pc of Sagittarius A*: twenty pulsar wind nebulae? Astrophys J 673(1):251–263. https://doi.org/10.1086/521641 Mytidis A, Coughlin M, Whiting B (2015) Constraining the R-mode saturation amplitude from a hypothetical detection of R-mode gravitational waves from a newborn neutron star: sensitivity study. Astrophys J 810:27. https://doi.org/10.1088/0004-637X/810/1/27. arXiv:1505.03191 [astro-ph.IM] Mytidis A, Panagopoulos AA, Panagopoulos OP, Miller A, Whiting B (2019) Sensitivity study using machine learning algorithms on simulated r-mode gravitational wave signals from newborn neutron stars. Phys Rev D 99(2):024024. https://doi.org/10.1103/PhysRevD.99.024024. arXiv:1508.02064 [astro-ph.IM] Narayan R (1987) The birthrate and initial spin period of single radio pulsars. Astrophys J 319:162. https://doi.org/10.1086/165442 Neuhäuser R, Hohle MM, Ginski C, Schmidt JG, Hambaryan VV, Schmidt TOB (2015) The companion candidate near Fomalhaut—a background neutron star? Mon Not R Astron Soc 448(1):376–389. https://doi.org/10.1093/mnras/stu2751 Neunzert A (2019) Searching for continuous gravitational waves from unknown isolated neutron stars in advanced LIGO data. PhD thesis, University of Michigan. https://hdl.handle.net/2027.42/151632 Ng CY, Romani RW (2004) Fitting pulsar wind tori. Astrophys J 601(1):479–484. https://doi.org/10.1086/380486 Ng KKY, Vitale S, Hannuksela OA, Li TGF (2021) Constraints on ultralight scalar bosons within black hole spin measurements from the LIGO-Virgo GWTC-2. Phys Rev Lett 126:151102. https://doi.org/10.1103/PhysRevLett.126.151102 Nieder L, Clark CJ, Bassa CG, Wu J, Singh A, Donner JY, Allen B, Breton RP, Dhillon VS, Eggenstein HB, Hessels JWT, Kennedy MR, Kerr M, Littlefair S, Marsh TR, Sánchez DM, Papa MA, Ray PS, Steltner B, Verbiest JPW (2019) Detection and timing of gamma-ray pulsations from the 707 Hz pulsar J0952–0607. Astrophys J 883(1):42. https://doi.org/10.3847/1538-4357/ab357e Nieder L, Clark CJ, Kandel D, Romani RW, Bassa CG, Allen B, Ashok A, Cognard I, Fehrmann H, Freire P, Karuppusamy R, Kramer M, Li D, Machenschalk B, Pan Z, Papa MA, Ransom SM, Ray PS, Roy J, Wang P, Wu J, Aulbert C, Barr ED, Beheshtipour B, Behnke O, Bhattacharyya B, Breton RP, Camilo F, Choquet C, Dhillon VS, Ferrara EC, Guillemot L, Hessels JWT, Kerr M, Kwang SA, Marsh TR, Mickaliger MB, Pleunis Z, Pletsch HJ, Roberts MSE, Sanpa-arsa S, Steltner B (2020) Discovery of a gamma-ray black widow pulsar by GPU-accelerated Einstein@home. Astrophys J Lett 902(2):L46. https://doi.org/10.3847/2041-8213/abbc02 Oliver M, Keitel D, Sintes AM (2019) Adaptive transient Hough method for long-duration gravitational wave transients. Phys Rev D. https://doi.org/10.1103/physrevd.99.104067 Oppenheimer JR, Volkoff GM (1939) On massive neutron cores. Phys Rev 55:374–381. https://doi.org/10.1103/PhysRev.55.374 Osborne EL, Jones DI (2020) Gravitational waves from magnetically-induced thermal neutron star mountains. Mon Not R Astron Soc 494(2):2839–2850. https://doi.org/10.1093/mnras/staa858. arXiv:1910.04453 [astro-ph.HE] Ostriker JP, Rees MJ, Silk J (1970) Some observable consequences of accretion by defunct pulsars. Astrophys J Lett 6:179 Owen BJ (1996) Search templates for gravitational waves from inspiraling binaries: choice of template spacing. Phys Rev D 53:6749–6761. https://doi.org/10.1103/PhysRevD.53.6749 Owen BJ (2005) Maximum elastic deformations of compact stars with exotic equations of state. Phys Rev Lett. https://doi.org/10.1103/physrevlett.95.211101 Owen BJ (2010) How to adapt broad-band gravitational-wave searches for \(r\)-modes. Phys Rev D 82:104002. https://doi.org/10.1103/PhysRevD.82.104002 Owen BJ, Lindblom L, Cutler C, Schutz BF, Vecchio A, Andersson N (1998) Gravitational waves from hot young rapidly rotating neutron stars. Phys Rev D 58:084020. https://doi.org/10.1103/PhysRevD.58.084020 Owen BJ, Lindblom L, Pinheiro LS (2022) First constraining upper limits on gravitational-wave emission from NS 1987A in SNR 1987A. Astrophys J Lett 935(1):L7. https://doi.org/10.3847/2041-8213/ac84dc. arXiv:2206.01168 [gr-qc] Özel F, Freire PCC (2016) Masses, radii, and the equation of state of neutron stars. Annu Rev Astron Astrophys 54(1):401–440. https://doi.org/10.1146/annurev-astro-081915-023322 Pacini F (1967) Energy emission from a neutron star. Nature 216(5115):567–568. https://doi.org/10.1038/216567a0 Pacini F (1968) Rotating neutron stars, pulsars, and Supernova Remnants. Nature 219:145. https://doi.org/10.1038/219145a0 Page D, Beznogov MV, Garibay I, Lattimer JM, Prakash M, Janka HT (2020) NS 1987A in SN 1987A. Astrophys J 898(2):125. https://doi.org/10.3847/1538-4357/ab93c2 Palomba C (2000) Pulsars ellipticity revised. Astron Astrophs 354:163–168 Palomba C (2005) Simulation of a population of isolated neutron stars evolving through the emission of gravitational waves. Mon Not R Astron Soc 359:1150–1164. https://doi.org/10.1111/j.1365-2966.2005.08975.x. arXiv:astro-ph/0503046 Palomba C (2012) Searches for continuous gravitational wave signals and stochastic backgrounds in LIGO and Virgo data. arXiv:1201.3176. arXiv:1201.3176 [astro-ph.IM] Palomba C, Astone P, Frasca S (2005) Adaptive Hough transform for the search of periodic sources. Class Quantum Grav 22(18):S1255–S1264. https://doi.org/10.1088/0264-9381/22/18/s39 Palomba C et al (2019) Direct constraints on ultra-light boson mass from searches for continuous gravitational waves. Phys Rev Lett 123:171101. https://doi.org/10.1103/PhysRevLett.123.171101. arXiv:1909.08854 [astro-ph.HE] Pandharipande VR, Pines D, Smith RA (1976) Neutron star structure: theory, observation, and speculation. Astrophys J 208:550–566. https://doi.org/10.1086/154637 Papa MA et al (2016) Hierarchical follow-up of subthreshold candidates of an all-sky Einstein@Home search for continuous gravitational waves on LIGO sixth science run data. Phys Rev D 94(12):122006. https://doi.org/10.1103/PhysRevD.94.122006. arXiv:1608.08928 [astro-ph.IM] Papa MA, Ming J, Gotthelf EV, Allen B, Prix R, Dergachev V, Eggenstein HB, Singh A, Zhu SJ (2020) Search for continuous gravitational waves from the central compact objects in Supernova Remnants Cassiopeia A, Vela Jr., and G347.3–0.5. Astrophys J 897(1):22. https://doi.org/10.3847/1538-4357/ab92a6 Papaloizou J, Pringle JE (1978) Gravitational radiation and the stability of rotating stars. Mon Not R Astron Soc 184:501–508. https://doi.org/10.1093/mnras/184.3.501 Parthasarathy A, Shannon RM, Johnston S, Lentati L, Bailes M, Dai S, Kerr M, Manchester RN, Oslowski S, Sobey C, van Straten W, Weltevrede P (2019) Timing of young radio pulsars-I. Timing noise, periodic modulation, and proper motion. Mon Not R Astron Soc 489(3):3810–3826. https://doi.org/10.1093/mnras/stz2383 Parthasarathy A et al (2020) Timing of young radio pulsars. II. Braking indices and their interpretation. Mon Not R Astron Soc 494(2):2012–2026. https://doi.org/10.1093/mnras/staa882 Paschalidis V, Stergioulas N (2017) Rotating stars in relativity. Living Rev Relativ 20:7. https://doi.org/10.1007/s41114-017-0008-x. arXiv:1612.03050 [astro-ph.HE] Patel P, Siemens X, Dupuis R, Betzwieser J (2010) Implementation of barycentric resampling for continuous wave searches in gravitational wave data. Phys Rev D. https://doi.org/10.1103/physrevd.81.084032 Patruno A (2017) The slow orbital evolution of the accreting millisecond pulsar IGR J0029\(+\)5934. Astrophys J 839(1):51. https://doi.org/10.3847/1538-4357/aa6986 Patruno A, Haskell B, D’Angelo C (2012) Gravitational waves and the maximum spin frequency of neutron stars. Astrophys J 746(1):9. https://doi.org/10.1088/0004-637x/746/1/9 Patruno A, Haskell B, Andersson N (2017) The spin distribution of fast-spinning neutron stars in low-mass X-ray binaries: evidence for two subpopulations. Astrophys J 850(1):106. https://doi.org/10.3847/1538-4357/aa927a. arXiv:1705.07669 [astro-ph.HE] Pavlov GG, Sanwal D, Kiziltan B, Garmire GP (2001) The compact central source in the RX J0852–4622 supernova remnant. Astrophys J Lett 559:L131. https://doi.org/10.1086/323975. arXiv:astro-ph/0108150 Payne DJB, Melatos A (2004) Burial of the polar magnetic field of an accreting neutron star-I. Self-consistent analytic and numerical equilibria. Mon Not R Astron Soc 351(2):569–584. https://doi.org/10.1111/j.1365-2966.2004.07798.x Penrose R (1969) Gravitational collapse: the role of general relativity. Riv Nuovo Cim 1:252–276. https://doi.org/10.1023/A:1016578408204, [Gen. Rel. Grav.34,1141(2002)] Pétri J (2019) The illusion of neutron star magnetic field estimates. Mon Not R Astron Soc 485(4):4573–4587. https://doi.org/10.1093/mnras/stz711. arXiv:1903.01528 [astro-ph.HE] Piccinni OJ (2022) Status and perspectives of continuous gravitational wave searches. Galaxies. https://doi.org/10.3390/galaxies10030072 Piccinni OJ, Astone P, D’Antonio S, Frasca S, Intini G, Leaci P, Mastrogiovanni S, Miller A, Palomba C, Singhal A (2018) A new data analysis framework for the search of continuous gravitational wave signals. Class Quantum Grav 36(1):015008. https://doi.org/10.1088/1361-6382/aaefb5 Piccinni OJ, Astone P, D’Antonio S, Frasca S, Intini G, La Rosa I, Leaci P, Mastrogiovanni S, Miller A, Palomba C (2020) Directed search for continuous gravitational-wave signals from the Galactic Center in the Advanced LIGO second observing run. Phys Rev D 101(8):082004. https://doi.org/10.1103/PhysRevD.101.082004. arXiv:1910.05097 [gr-qc] Pierce A, Riles K, Zhao Y (2018) Searching for dark photon dark matter with gravitational-wave detectors. Phys Rev Lett. https://doi.org/10.1103/physrevlett.121.061102 Pierini L, Astone P, Palomba C, Nyquist A, Dall’Osso S, D’Antonio S, Frasca S, La Rosa I, Leaci P, Muciaccia F, Piccinni OJ, Rei L (2022) Impact of signal clusters in wide-band searches for continuous gravitational waves. Phys Rev D 106:042009. https://doi.org/10.1103/PhysRevD.106.042009 Piro AL, Giacomazzo B, Perna R (2017) The fate of neutron star binary mergers. Astrophys J 844(2):L19. https://doi.org/10.3847/2041-8213/aa7f2f Pisarski A, Jaranowski P (2015) Banks of templates for all-sky narrow-band searches of gravitational waves from spinning neutron stars. Class Quantam Grav 32(14):145014. https://doi.org/10.1088/0264-9381/32/14/145014. arXiv:1302.0509 [gr-qc] Pisarski A, Jaranowski P, Pietka M (2011) Banks of templates for directed searches of gravitational waves from spinning neutron stars. Phys Rev D 83:043001. https://doi.org/10.1103/PhysRevD.83.043001. arXiv:1010.2879 [gr-qc] Pitkin M, Reid S, Rowan S, Hough J (2011) Gravitational wave detection by interferometry (ground and space). Living Rev Rel 14:5. https://doi.org/10.12942/lrr-2011-5 Pitkin M, Gill C, Jones DI, Woan G, Davies GS (2015) First results and future prospects for dual-harmonic searches for gravitational waves from spinning neutron stars. Mon Not R Astron Soc 453(4):4399–4420. https://doi.org/10.1093/mnras/stv1931 Pitkin M, Doolan S, McMenamin L, Wette K (2018) Reduced order modelling in searches for continuous gravitational waves-I. Barycentring time delays. Mon Not R Astron Soc 476(4):4510–4519. https://doi.org/10.1093/mnras/sty548 Pletsch HJ (2008) Parameter-space correlations of the optimal statistic for continuous gravitational-wave detection. Phys Rev D 78:102005. https://doi.org/10.1103/PhysRevD.78.102005 Pletsch HJ (2010) Parameter-space metric of semicoherent searches for continuous gravitational waves. Phys Rev D 82:042002. https://doi.org/10.1103/PhysRevD.82.042002. arXiv:1005.0395 [gr-qc] Pletsch HJ, Allen B (2009) Exploiting global correlations to detect continuous gravitational waves. Phys Rev Lett 103:181102. https://doi.org/10.1103/PhysRevLett.103.181102. arXiv:0906.0023 [gr-qc] Pletsch HJ, Guillemot L, Allen B, Kramer M, Aulbert C, Fehrmann H, Ray PS, Barr ED, Belfiore A, Camilo F et al (2011) Discovery of nine gamma-ray pulsars in Fermi Large Area Telescope data using a new blind search method. Astrophys J 744(2):105. https://doi.org/10.1088/0004-637x/744/2/105 Popov SB, Postnov KA, Shakura NI (2015) Settling accretion on to isolated neutron stars from interstellar medium. Mon Not R Astron Soc 447(3):2817–2820. https://doi.org/10.1093/mnras/stu2643 Poppenhaeger K, Auchettl K, Wolk SJ (2017) A test of the neutron star hypothesis for Fomalhaut b. Mon Not R Astron Soc 468(4):4018–4024. https://doi.org/10.1093/mnras/stx565 Potekhin AY, Pons JA, Page D (2015) Neutron stars-cooling and transport. Space Sci Rev 191(1–4):239–291. https://doi.org/10.1007/s11214-015-0180-9. arXiv:1507.06186 [astro-ph.HE] Premachandra SS, Galloway DK, Casares J, Steeghs DT, Marsh TR (2016) Precision ephemerides for gravitational wave searches: II. Cyg X-2. Astrophys J 823(2):106. https://doi.org/10.3847/0004-637X/823/2/106. arXiv:1604.03233 [astro-ph.HE] Prix R (2007a) Search for continuous gravitational waves: Metric of the multidetector \({\cal{F} }\)-statistic. Phys Rev D 75:023004. https://doi.org/10.1103/PhysRevD.75.023004 Prix R (2007b) Template-based searches for gravitational waves: efficient lattice covering of flat parameter spaces. Class Quantum Grav 24(19):S481–S490. https://doi.org/10.1088/0264-9381/24/19/s11 Prix R (2009) Gravitational waves from spinning neutron stars. In: Becker W (ed) Neutron stars and pulsars. Astrophysics and Space Science Library, vol 357. Springer, pp 651–685. https://doi.org/10.1007/978-3-540-76965-1_24 Prix R (2018) The F-statistic and its implementation in ComputeFstatistic_v2. Technical Report LIGO Report T0900149-v6, LIGO. https://dcc.ligo.org/T0900149 Prix R, Itoh Y (2005) Global parameter-space correlations of coherent searches for continuous gravitational waves. Class Quantum Grav 22:S1003. https://doi.org/10.1088/0264-9381/22/18/S14 Prix R, Krishnan B (2009) Targeted search for continuous gravitational waves: Bayesian versus maximum-likelihood statistics. Class Quant Grav 26:204013. https://doi.org/10.1088/0264-9381/26/20/204013. arXiv:0907.2569 [gr-qc] Prix R, Shaltev M (2012) Search for continuous gravitational waves: optimal stackslide method at fixed computing cost. Phys Rev D 85:084010. https://doi.org/10.1103/PhysRevD.85.084010. arXiv:1201.4321 [gr-qc] Prix R, Giampanis S, Messenger C (2011) Search method for long-duration gravitational-wave transients from neutron stars. Phys Rev D 84:023007. https://doi.org/10.1103/PhysRevD.84.023007 Raaijmakers G, Riley TE, Watts AL, Greif SK, Morsink SM, Hebeler K, Schwenk A, Hinderer T, Nissanke S, Guillot S, Arzoumanian Z, Bogdanov S, Chakrabarty D, Gendreau KC, Ho WCG, Lattimer JM, Ludlam RM, Wolff MT (2019) A NICER view of PSR J0030+0451: implications for the dense matter equation of state. Astrophys J Lett 887(1):L22. https://doi.org/10.3847/2041-8213/ab451a. arXiv:1912.05703 [astro-ph.HE] Raaijmakers G, Greif SK, Hebeler K, Hinderer T, Nissanke S, Schwenk A, Riley TE, Watts AL, Lattimer JM, Ho WCG (2021) Constraints on the dense matter equation of state and neutron star properties from NICER’s mass-radius estimate of PSR J0740+6620 and multimessenger observations. Astrophys J Lett 918(2):L29. https://doi.org/10.3847/2041-8213/ac089a. arXiv:2105.06981 [astro-ph.HE] Radhakrishnan V, Srinivasan G (1982) On the origin of the recently discovered ultra-rapid pulsar. Curr Sci 51:1096–1099 Rajbhandari B, Owen BJ, Caride S, Inta R (2021) First searches for gravitational waves from \(r\)-modes of the Crab pulsar. Phys Rev D 104:122008. https://doi.org/10.1103/PhysRevD.104.122008 Ravenhall DG, Pethick CJ, Wilson JR (1983) Structure of matter below nuclear saturation density. Phys Rev Lett 50:2066–2069. https://doi.org/10.1103/PhysRevLett.50.2066 Ravi V, Lasky PD (2014) The birth of black holes: neutron star collapse times, gamma-ray bursts and fast radio bursts. Mon Not R Astron Soc 441(3):2433–2439. https://doi.org/10.1093/mnras/stu720. arXiv:1403.6327 [astro-ph.HE] Reardon DJ, Shannon RM, Cameron AD, Goncharov B, Hobbs GB, Middleton H, Shamohammadi M, Thyagarajan N, Bailes M, Bhat NDR, Dai S, Kerr M, Manchester RN, Russell CJ, Spiewak R, Wang JB, Zhu XJ (2021) The Parkes pulsar timing array second data release: timing analysis. Mon Not R Astron Soc 507(2):2137–2153. https://doi.org/10.1093/mnras/stab1990 Reed JE, Hester JJ, Fabian AC, Winkler PF (1995) The three-dimensional structure of the Cassiopeia A Supernova Remnant. I. The spherical shell. Astrophys J 440:706. https://doi.org/10.1086/175308 Reed BT, Deibel A, Horowitz CJ (2021) Modeling the galactic neutron star population for use in continuous gravitational-wave searches. Astrophys J 921(1):89. https://doi.org/10.3847/1538-4357/ac1c04. arXiv:2104.00771 [astro-ph.HE] Regimbau T, de Freitas Pacheco JA (2006) Gravitational wave background from magnetars. Astron Astrophys 447:1. https://doi.org/10.1051/0004-6361:20053702. arXiv:astro-ph/0509880 Renaud M, Marandon V, Gotthelf EV, Rodriguez J, Terrier R, Mattana F, Lebrun F, Tomsick JA, Manchester RN (2010) Discovery of a highly energetic pulsar associated with IGR J14003–6326 in the young uncataloged galactic supernova remnant G310.6–1.6. Astrophys J 716(1):663–670. https://doi.org/10.1088/0004-637x/716/1/663 Reynolds CS (2014) Measuring black hole spin using X-ray reflection spectroscopy. Space Sci Rev 183(1–4):277–294. https://doi.org/10.1007/s11214-013-0006-6. arXiv:1302.3260 [astro-ph.HE] Reynolds SP, Borkowski KJ, Green DA, Hwang U, Harrus I, Petre R (2008) The youngest galactic supernova remnant: G1.9+0.3. Astrophys J Lett 680:L41. https://doi.org/10.1086/589570 Riles K (2013) Gravitational waves: sources, detectors and searches. Prog Part Nucl Phys 68:1–54. https://doi.org/10.1016/j.ppnp.2012.08.001. arXiv:1209.0667 [hep-ex] Riles K (2017) Recent searches for continuous gravitational waves. Mod Phys Lett A 32(39):1730035. https://doi.org/10.1142/S021773231730035X. arXiv:1712.05897 [gr-qc] Riley TE, Watts AL, Bogdanov S, Ray PS, Ludlam RM, Guillot S, Arzoumanian Z, Baker CL, Bilous AV, Chakrabarty D, Gendreau KC, Harding AK, Ho WCG, Lattimer JM, Morsink SM, Strohmayer TE (2019) A NICER view of PSR J0030+0451: millisecond pulsar parameter estimation. Astrophys J 887(1):L21. https://doi.org/10.3847/2041-8213/ab481c. arXiv:1912.05702 [astro-ph.HE] Riley TE, Watts AL, Ray PS, Bogdanov S, Guillot S, Morsink SM, Bilous AV, Arzoumanian Z, Choudhury D, Deneva JS, Gendreau KC, Harding AK, Ho WCG, Lattimer JM, Loewenstein M, Ludlam RM, Markwardt CB, Okajima T, Prescod-Weinstein C, Remillard RA, Wolff MT, Fonseca E, Cromartie HT, Kerr M, Pennucci TT, Parthasarathy A, Ransom S, Stairs I, Guillemot L, Cognard I (2021) A NICER view of the massive pulsar PSR J0740+6620 informed by radio timing and XMM-Newton spectroscopy. Astrophys J Lett 918(2):L27. https://doi.org/10.3847/2041-8213/ac0a81. arXiv:2105.06980 [astro-ph.HE] Roberts MSE, van Leeuwen J (eds) (2013) Neutron stars and pulsars: challenges and opportunities after 80 years, IAU symposium, vol 291. Cambridge University Press Romani RW (1990) A unified model of neutron-star magnetic fields. Nature 347(6295):741–743. https://doi.org/10.1038/347741a0 Romano JD, Cornish NJ (2017) Detection methods for stochastic gravitational-wave backgrounds: a unified treatment. Living Rev Relativ 20:2. https://doi.org/10.1007/s41114-017-0004-1. arXiv:1608.06889 [gr-qc] Roy J, Gupta Y, Lewandowski W (2012) Observations of four glitches in the young pulsar J1833–1034 and study of its glitch activity. Mon Not R Astron Soc 424(3):2213–2221. https://doi.org/10.1111/j.1365-2966.2012.21380.x Ruderman M (1969) Neutron starquakes and pulsar periods. Nature 223(5206):597–598. https://doi.org/10.1038/223597b0 Ruderman MA, Sutherland PG (1975) Theory of pulsars: polar gaps, sparks, and coherent microwave radiation. Astrophys J 196:51–72. https://doi.org/10.1086/153393 Sammut L, Messenger C, Melatos A, Owen BJ (2014) Implementation of the frequency-modulated sideband search method for gravitational waves from low mass X-ray binaries. Phys Rev D 89(4):043001. https://doi.org/10.1103/PhysRevD.89.043001. arXiv:1311.1379 [gr-qc] Sanders J (2016) Advanced gravitational wave detectors and detection: arm length stabilization and directed searches for isolated neutron stars. PhD thesis, University of Michigan. https://hdl.handle.net/2027.42/120826 Sancho de la Jordana L (2010) Hierarchical Hough all-sky search for periodic gravitational waves in LIGO S5 data. J Phys: Conf Ser 228:012004. https://doi.org/10.1088/1742-6596/228/1/012004. arXiv:1001.3754 [gr-qc] Sancho de la Jordana L, Sintes AM (2008) A \(\chi ^2\) veto for continuous wave searches. Class Quantam Grav 25:184014. https://doi.org/10.1088/0264-9381/25/18/184014. arXiv:0804.1007 [gr-qc] Sarin N, Lasky PD, Sammut L, Ashton G (2018) X-ray guided gravitational-wave search for binary neutron star merger remnants. Phys Rev D 98(4):043011. https://doi.org/10.1103/PhysRevD.98.043011. arXiv:1805.01481 [astro-ph.HE] Sarin N, Lasky PD, Ashton G (2020) Interpreting the X-ray afterglows of gamma-ray bursts with radiative losses and millisecond magnetars. Mon Not R Astron Soc 499(4):5986–5992. https://doi.org/10.1093/mnras/staa3090. arXiv:2008.05745 [astro-ph.HE] Sathyaprakash BS, Dhurandhar SV (1991) Choice of filters for the detection of gravitational waves from coalescing binaries. Phys Rev D 44:3819–3834. https://doi.org/10.1103/PhysRevD.44.3819 Sathyaprakash BS, Schutz BF (2009) Physics astrophysics and cosmology with gravitational waves. Living Rev Rel 12:2. https://doi.org/10.12942/lrr-2009-2 Saulson PR (2017) Fundamentals of interferometric gravitational wave detectors, 2nd edn. World Scientific, Singapore Sauter O, Dergachev V, Riles K (2019) Efficient estimation of barycentered relative time delays for distant gravitational wave sources. Phys Rev D. https://doi.org/10.1103/physrevd.99.044006 Schutz BF (1985) A first course in general relativity. Cambridge University Press, Cambridge Schutz BF (1991) Data processing, analysis, and storage for interferometric antennas. In: Blair DG (ed) The detection of gravitational waves. Cambridge University Press, pp 406–452. https://doi.org/10.1017/CBO9780511600104.018 Serim D, Serim MM, Baykal A (2022) Pulse frequency fluctuations of persistent accretion powered pulsars. Mon Not R Astron Soc 518(1):1–12. https://doi.org/10.1093/mnras/stac3076. arXiv:2207.00248 [astro-ph.HE] Seto N (2005) Gravitational wave astrometry for rapidly rotating neutron stars and estimation of their distances. Phys Rev D 71:123002. https://doi.org/10.1103/PhysRevD.71.123002 Shaltev M (2016) Optimizing the StackSlide setup and data selection for continuous-gravitational-wave searches in realistic detector data. Phys Rev D 93(4):044058. https://doi.org/10.1103/PhysRevD.93.044058. arXiv:1510.06427 [gr-qc] Shaltev M, Leaci P, Papa MA, Prix R (2014) Fully coherent follow-up of continuous gravitational-wave candidates: an application to Einstein@Home results. Phys Rev D 89(12):124030. https://doi.org/10.1103/PhysRevD.89.124030. arXiv:1405.1922 [gr-qc] Shapiro SL, Teukolsky SA (1983) Black holes. The physics of compact objects. White Dwarfs and Neutron Stars. Wiley, New York Shklovskii IS (1970) Possible causes of the secular increase in pulsar periods. Sov Astron 13:562 Siemonsen N, East WE (2020) Gravitational wave signatures of ultralight vector bosons from black hole superradiance. Phys Rev D 101(2):024019. https://doi.org/10.1103/PhysRevD.101.024019. arXiv:1910.09476 [gr-qc] Sieniawska M, Bejger M (2019) Continuous gravitational waves from neutron stars: current status and prospects. Universe 5(11):217. https://doi.org/10.3390/universe5110217. arXiv:1909.12600 [astro-ph.HE] Sieniawska M, Jones DI (2021) Gravitational waves from spinning neutron stars as not-quite-standard sirens. Mon Not R Astron Soc 509(4):5179–5187. https://doi.org/10.1093/mnras/stab3315 Sieniawska M, Bejger M, Królak A (2019) Follow-up procedure for gravitational wave searches from isolated neutron stars using the time-domain \({\cal{F} }\)-statistic method. Class Quantum Grav 36(22):225008. https://doi.org/10.1088/1361-6382/ab3ee5 Sieniawska M, Jones DI, Miller AL (2023) Measuring neutron-star distances and properties with gravitational-wave parallax. Mon Not R Astron Soc 521(2):1924–1930. https://doi.org/10.1093/mnras/stad624. arXiv:2212.07506 [astro-ph.HE] Singh A, Papa MA (2023) Opportunistic search for continuous gravitational waves from compact objects in long-period binaries. Astrophys J 943(2):99. https://doi.org/10.3847/1538-4357/acaf80. arXiv:2208.14117 [gr-qc] Singh A, Papa MA, Eggenstein HB, Walsh S (2017) Adaptive clustering procedure for continuous gravitational wave searches. Phys Rev D 96(8):082003. https://doi.org/10.1103/PhysRevD.96.082003. arXiv:1707.02676 [gr-qc] Singh A, Papa MA, Dergachev V (2019) Characterizing the sensitivity of isolated continuous gravitational wave searches to binary orbits. Phys Rev D 100(2):024058. https://doi.org/10.1103/PhysRevD.100.024058. arXiv:1904.06325 [gr-qc] Singh N, Haskell B, Mukherjee D, Bulik T (2020) Asymmetric accretion and thermal ‘mountains’ in magnetized neutron star crusts. Mon Not R Astron Soc 493(3):3866–3878. https://doi.org/10.1093/mnras/staa442. arXiv:1908.05038 [astro-ph.HE] Singhal A et al (2019) A resampling algorithm to detect continuous gravitational-wave signals from neutron stars in binary systems. Class Quantam Grav 36(20):205015. https://doi.org/10.1088/1361-6382/ab4367 Sintes AM, Krishnan B (2006) Improved Hough search for gravitational wave pulsars. J Phys: Conf Ser 32:206–211. https://doi.org/10.1088/1742-6596/32/1/031. arXiv:gr-qc/0601081 Slane P, Gaensler BM, Dame TM, Hughes JP, Plucinsky PP, Green A (1999) Nonthermal X-ray emission from the shell-type supernova remnant G347.3–0.5. Astrophys J 525(1):357–367. https://doi.org/10.1086/307893 Smith DA, Bruel P, Cognard I, Cameron AD, Camilo F, Dai S, Guillemot L, Johnson TJ, Johnston S, Keith MJ, Kerr M, Kramer M, Lyne AG, Manchester RN, Shannon R, Sobey C, Stappers BW, Weltevrede P (2019) Searching a thousand radio pulsars for gamma-ray emission. Astrophys J 871(1):78. https://doi.org/10.3847/1538-4357/aaf57d Soida K, Ando M, Kanda N, Tagoshi H, Tatsumi D, Tsubono K, the TAMA Collaboration (2003) Search for continuous gravitational waves from the SN1987A remnant using TAMA300 data. Class Quantum Grav 20(17):S645–S654. https://doi.org/10.1088/0264-9381/20/17/308 Spitkovsky A (2004) Electrodynamics of pulsar magnetospheres. IAU Symp 218:357 arXiv:astro-ph/0310731 Staelin DH, Reifenstein EC (1968) Pulsating radio sources near the Crab nebula. Science 162(3861):1481–1483. https://doi.org/10.1126/science.162.3861.1481 Starobinskiǐ AA (1973) Amplification of waves during reflection from a rotating “black hole’’. Soviet J Exp Theor Phys 37:28 Steltner B, Papa MA, Eggenstein HB, Allen B, Dergachev V, Prix R, Machenschalk B, Walsh S, Zhu SJ, Behnke O et al (2021) Einstein@Home all-sky search for continuous gravitational waves in LIGO O2 public data. Astrophys J 909(1):79. https://doi.org/10.3847/1538-4357/abc7c9 Steltner B, Menne T, Papa MA, Eggenstein HB (2022a) Density-clustering of continuous gravitational wave candidates from large surveys. Phys Rev D 106:104063. https://doi.org/10.1103/PhysRevD.106.104063 Steltner B, Papa MA, Eggenstein HB (2022b) Identification and removal of non-Gaussian noise transients for gravitational-wave searches. Phys Rev D 105:022005. https://doi.org/10.1103/PhysRevD.105.022005 Stockinger G et al (2020) Three-dimensional models of core-collapse supernovae from low-mass progenitors with implications for crab. Mon Not R Astron Soc 496(2):2039–2084. https://doi.org/10.1093/mnras/staa1691. arXiv:2005.02420 [astro-ph.HE] Strader J et al (2019) Optical spectroscopy and demographics of redback millisecond pulsar binaries. Astrophys J 872(1):42. https://doi.org/10.3847/1538-4357/aafbaa. arXiv:1812.04626 [astro-ph.HE] Strang LC, Melatos A, Sarin N, Lasky PD (2021) Inferring properties of neutron stars born in short gamma-ray bursts with a plerion-like X-ray plateau. Mon Not R Astron Soc 507(2):2843–2855. https://doi.org/10.1093/mnras/stab2210. arXiv:2107.13787 [astro-ph.HE] Strohmayer T, Mahmoodifar S (2014a) A non-radial oscillation mode in an accreting millisecond pulsar? Astrophys J 784:72. https://doi.org/10.1088/0004-637X/784/1/72. arXiv:1310.5147 [astro-ph.HE] Strohmayer T, Mahmoodifar S (2014b) Discovery of a neutron star oscillation mode during a superburst. Astrophys J Lett 793(2):L38. https://doi.org/10.1088/2041-8205/793/2/L38. arXiv:1409.2847 [astro-ph.HE] Sturrock PA (1970) Pulsar radiation mechanisms. Nature 227(5257):465–470. https://doi.org/10.1038/227465a0 Sun L (2018) Hidden Markov model and cross-correlation searches for continuous gravitational waves. PhD thesis, University of Melbourne. http://hdl.handle.net/11343/213141 Sun L, Melatos A (2019) Application of hidden Markov model tracking to the search for long-duration transient gravitational waves from the remnant of the binary neutron star merger GW170817. Phys Rev D 99:123003. https://doi.org/10.1103/PhysRevD.99.123003 Sun L, Melatos A, Lasky PD, Chung CTY, Darman NS (2016) Cross-correlation search for continuous gravitational waves from a compact object in SNR 1987A in LIGO Science run 5. Phys Rev D 94:082004. https://doi.org/10.1103/PhysRevD.94.082004 Sun L, Melatos A, Suvorova S, Moran W, Evans RJ (2018) Hidden Markov model tracking of continuous gravitational waves from young supernova remnants. Phys Rev D. https://doi.org/10.1103/physrevd.97.043013 Sun L, Melatos A, Lasky PD (2019) Tracking continuous gravitational waves from a neutron star at once and twice the spin frequency with a hidden Markov model. Phys Rev D 99:123010. https://doi.org/10.1103/PhysRevD.99.123010 Sun L, Brito R, Isi M (2020) Search for ultralight bosons in Cygnus X-1 with Advanced LIGO. Phys Rev D. https://doi.org/10.1103/physrevd.101.063020 Suvorov AG, Melatos A (2019) Relaxation by thermal conduction of a magnetically confined mountain on an accreting neutron star. Mon Not R Astron Soc 484(1):1079–1099. https://doi.org/10.1093/mnras/sty3518. arXiv:1812.10029 [astro-ph.HE] Suvorova S, Sun L, Melatos A, Moran W, Evans RJ (2016) Hidden Markov model tracking of continuous gravitational waves from a neutron star with wandering spin. Phys Rev D 93(12):123009. https://doi.org/10.1103/PhysRevD.93.123009. arXiv:1606.02412 [astro-ph.IM] Suvorova S, Clearwater P, Melatos A, Sun L, Moran W, Evans RJ (2017) Hidden Markov model tracking of continuous gravitational waves from a binary neutron star with wandering spin . II. Binary orbital phase tracking. Phys Rev D 96:102006. https://doi.org/10.1103/PhysRevD.96.102006 Suzuki T (1995) Search for continuous gravitational wave from pulsars with resonant detector. In: Coccia E (ed) First Edoardo Amaldi conference on gravitational wave experiments. World Scientific, p 115 Tan CM, Bassa CG, Cooper S, Dijkema TJ, Esposito P, Hessels JWT, Kondratiev VI, Kramer M, Michilli D, Sanidas S, Shimwell TW, Stappers BW, van Leeuwen J, Cognard I, Grießmeier JM, Karastergiou A, Keane EF, Sobey C, Weltevrede P (2018) LOFAR discovery of a 23.5 s radio pulsar. Astrophys J Lett 866(1):54. https://doi.org/10.3847/1538-4357/aade88.[astro-ph.HE] Tananbaum H (1999) Cassiopeia A. IAU Circ 7246:1 Tauris TM (2012) Spin-down of radio millisecond pulsars at genesis. Science 335(6068):561–563. https://doi.org/10.1126/science.1216355 Tauris TM, Konar S (2001) Torque decay in the pulsar (P, dot P) diagram. Effects of crustal ohmic dissipation and alignment. Astron Astrophys 376:543–552. https://doi.org/10.1051/0004-6361:20010988 Taylor JH (1992) Pulsar timing and relativistic gravity. Philos Trans A Math Phys Eng Sci 341(1660):117–134. https://doi.org/10.1098/rsta.1992.0088 Tenorio R (2021) An all-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron stars in binary systems. In: 55th Rencontres de Moriond on Gravitation. arXiv:2105.07455 [gr-qc] Tenorio R, Keitel D, Sintes AM (2021a) Application of a hierarchical MCMC follow-up to Advanced LIGO continuous gravitational-wave candidates. Phys Rev D 104(8):084012. https://doi.org/10.1103/physrevd.104.084012 Tenorio R, Keitel D, Sintes AM (2021b) Search methods for continuous gravitational-wave signals from unknown sources in the advanced-detector era. Universe. https://doi.org/10.3390/universe7120474 Tenorio R, Keitel D, Sintes AM (2021c) Time-frequency track distance for comparing continuous gravitational wave signals. Phys Rev D 103(6):064053. https://doi.org/10.1103/PhysRevD.103.064053 Tenorio R, Modafferi LM, Keitel D, Sintes AM (2022) Empirically estimating the distribution of the loudest candidate from a gravitational-wave search. Phys Rev D 105(4):044029. https://doi.org/10.1103/PhysRevD.105.044029. arXiv:2111.12032 [gr-qc] Thorne KS (1980) Multipole expansions of gravitational radiation. Rev Mod Phys 52:299–339. https://doi.org/10.1103/RevModPhys.52.299 Thorne KS (1989) Gravitational radiation. In: Hawking SW, Israel W (eds) Three hundred years of gravitation. Cambridge University Press, Cambridge, p 330 Thorne KS, Zytkow AN (1975) Red giants and supergiants with degenerate neutron cores. Astrophys J 199:L19–L24. https://doi.org/10.1086/181839 Thorstensen JR, Armstrong E (2005) Is FIRST J102347.6+003841 Really a Cataclysmic Binary? Astrophys J 130(2):759–766. https://doi.org/10.1086/431326. arXiv:astro-ph/0504523 [astro-ph] Thrane E, Kandhasamy S, Ott CD, Anderson WG, Christensen NL, Coughlin MW, Dorsher S, Giampanis S, Mandic V, Mytidis A et al (2011) Long gravitational-wave transients and associated detection strategies for a network of terrestrial interferometers. Phys Rev D. https://doi.org/10.1103/physrevd.83.083004 Thrane E, Mitra S, Christensen N, Mandic V, Ain A (2015) All-sky, narrowband, gravitational-wave radiometry with folded data. Phys Rev D 91:124012. https://doi.org/10.1103/PhysRevD.91.124012 Tiwari V, Drago M, Frolov V, Klimenko S, Mitselmakher G, Necula V, Prodi G, Re V, Salemi F, Vedovato G, Yakushin I (2015) Regression of environmental noise in LIGO data. Class Quantum Grav 32(16):165014. https://doi.org/10.1088/0264-9381/32/16/165014 Torres MAP, Jonker PG, Steeghs D, Roelofs GHA, Bloom JS, Casares J, Falco EE, Garcia MR, Marsh TR, Mendez M, Miller JM, Nelemans G, Rodriguez-Gil P (2008) Observations of the 599 Hz accreting x-ray pulsar IGR J00291\(+\)5934 during the 2004 outburst and in quiescence. Astrophys J 672(2):1079–1090. https://doi.org/10.1086/523831 Treves A, Turolla R, Zane S, Colpi M (2000) Isolated neutron stars: accretors and coolers. Publ Astron Soc Pac 112(769):297 Tse M et al (2019) Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy. Phys Rev Lett 123:231107. https://doi.org/10.1103/PhysRevLett.123.231107 Tsukada L, Callister T, Matas A, Meyers P (2019) First search for a stochastic gravitational-wave background from ultralight bosons. Phys Rev D 99:103015. https://doi.org/10.1103/PhysRevD.99.103015 Tsukada L, Brito R, East WE, Siemonsen N (2021) Modeling and searching for a stochastic gravitational-wave background from ultralight vector bosons. Phys Rev D 103:083005. https://doi.org/10.1103/PhysRevD.103.083005 University of California B (2002) The Einstein@Home project is built upon the BOINC (Berkeley Open Infrastructure for Network Computing) architecture described at http://boinc.berkeley.edu/ Ushomirsky G, Cutler C, Bildsten L (2000) Deformations of accreting neutron star crusts and gravitational wave emission. Mon Not R Astron Soc 319:902. https://doi.org/10.1046/j.1365-8711.2000.03938.x. arXiv:astro-ph/0001136 Vajente G, Huang Y, Isi M, Driggers JC, Kissel JS, Szczepańczyk MJ, Vitale S (2020) Machine-learning nonstationary noise out of gravitational-wave detectors. Phys Rev D. https://doi.org/10.1103/physrevd.101.042003 Valluri SR, Dergachev V, Zhang X, Chishtie FA (2021) Fourier transform of the continuous gravitational wave signal. Phys Rev D 104:024065. https://doi.org/10.1103/PhysRevD.104.024065 Van Den Broeck C (2005) The gravitational wave spectrum of non-axisymmetric, freely precessing neutron stars. Class Quantum Grav 22(9):1825–1839. https://doi.org/10.1088/0264-9381/22/9/022 van der Putten S, Bulten HJ, van den Brand JFJ, Holtrop M (2010) Searching for gravitational waves from pulsars in binary systems: an all-sky search. J Phys: Conf Ser 228:012005. https://doi.org/10.1088/1742-6596/228/1/012005 Vermeulen SM, Relton P, Grote H, Raymond V, Affeldt C, Bergamin F, Bisht A, Brinkmann M, Danzmann K, Doravari S, Kringel V, Lough J, Lück H, Mehmet M, Mukund N, Nadji S, Schreiber E, Sorazu B, Strain KA, Vahlbruch H, Weinert M, Willke B, Wittel H (2021) Direct limits for scalar field dark matter from a gravitational-wave detector. Nature 600(7889):424–428. https://doi.org/10.1038/s41586-021-04031-y Viceré A, Yvert M (2016) An autocorrelation method to detect periodic gravitational waves from neutron stars in binary systems. Class Quantum Grav 33(16):165006. https://doi.org/10.1088/0264-9381/33/16/165006 Viets A, Wade M (2021) Subtracting narrow-band noise from LIGO strain data in the third observing run. Technical Report. LIGO Report T2100058, LIGO. https://dcc.ligo.org/T2100058 Vigelius M, Melatos A (2010) Gravitational-wave spin-down and stalling lower limits on the electrical resistivity of the accreted mountain in a millisecond pulsar. Astrophys J 717:404–410. https://doi.org/10.1088/0004-637X/717/1/404. arXiv:1005.2257 [astro-ph.HE] Viterbi A (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transact Informat Theory 13(2):260–269 Wade L, Siemens X, Kaplan DL, Knispel B, Allen B (2012) Continuous gravitational waves from isolated Galactic neutron stars in the advanced detector era. Phys Rev D 86:124011. https://doi.org/10.1103/PhysRevD.86.124011 Wagoner RV (1984) Gravitational radiation from accreting neutron stars. Astrophys J 278:345–348. https://doi.org/10.1086/161798 Walsh S et al (2016) Comparison of methods for the detection of gravitational waves from unknown neutron stars. Phys Rev D 94(12):124010. https://doi.org/10.1103/PhysRevD.94.124010. arXiv:1606.00660 [gr-qc] Walsh S, Wette K, Papa MA, Prix R (2019) Optimizing the choice of analysis method for all-sky searches for continuous gravitational waves with Einstein@Home. Phys Rev D. https://doi.org/10.1103/physrevd.99.082004 Wang L, Steeghs D, Galloway DK, Marsh T, Casares J (2018) Precision ephemerides for gravitational-wave searches-III. Revised system parameters of Sco X-1. Mon Not R Astron Soc 478(4):5174–5183. https://doi.org/10.1093/mnras/sty1441 Watts A, Krishnan B, Bildsten L, Schutz BF (2008) Detecting gravitational wave emission from the known accreting neutron stars. Mon Not R Astron Soc 389:839–868. https://doi.org/10.1111/j.1365-2966.2008.13594.x. arXiv:0803.4097 [astro-ph] Weltevrede P, Johnston S, Espinoza CM (2011) The glitch-induced identity changes of PSR J1119–6127. Mon Not R Astron Soc 411(3):1917–1934 Weltevrede P, Perera BBP, Preston L, Sanidas S (eds) (2018) Pulsar astrophysics: the next 50 years, IAU symposium, vol 337. Cambridge University Press Wette K (2012) Estimating the sensitivity of wide-parameter-space searches for gravitational-wave pulsars. Phys Rev D 85:042003. https://doi.org/10.1103/PhysRevD.85.042003. arXiv:1111.5650 [gr-qc] Wette K (2014) Lattice template placement for coherent all-sky searches for gravitational-wave pulsars. Phys Rev D 90:122010. https://doi.org/10.1103/PhysRevD.90.122010 Wette K (2015) Parameter-space metric for all-sky semicoherent searches for gravitational-wave pulsars. Phys Rev D 92:082003. https://doi.org/10.1103/PhysRevD.92.082003 Wette K (2016) Empirically extending the range of validity of parameter-space metrics for all-sky searches for gravitational-wave pulsars. Phys Rev D 94(12):122002. https://doi.org/10.1103/PhysRevD.94.122002. arXiv:1607.00241 [gr-qc] Wette K (2021) Geometric approach to analytic marginalisation of the likelihood ratio for continuous gravitational wave searches. Universe 7(6):174. https://doi.org/10.3390/universe7060174. arXiv:2104.14829 [gr-qc] Wette K, Prix R (2013) Flat parameter-space metric for all-sky searches for gravitational-wave pulsars. Phys Rev D 88:123005. https://doi.org/10.1103/PhysRevD.88.123005 Wette K, Owen BJ, Allen B, Ashley M, Betzwieser J, Christensen N, Creighton TD, Dergachev V, Gholami I, Goetz E, Gustafson R, Hammer D, Jones DI, Krishnan B, Landry M, Machenschalk B, McClelland DE, Mendell G, Messenger CJ, Papa MA, Patel P, Pitkin M, Pletsch HJ, Prix R, Riles K, de la Jordana LS, Scott SM, Sintes AM, Trias M, Whelan JT, Woan G (2008) Searching for gravitational waves from Cassiopeia A with LIGO. Class Quantum Grav 25(23):235011. https://doi.org/10.1088/0264-9381/25/23/235011 Wette K, Walsh S, Prix R, Papa MA (2018) Implementing a semicoherent search for continuous gravitational waves using optimally constructed template banks. Phys Rev D. https://doi.org/10.1103/physrevd.97.123016 Wette K, Dunn L, Clearwater P, Melatos A (2021) Deep exploration for continuous gravitational waves at 171–172 Hz in LIGO second observing run data. Phys Rev D. https://doi.org/10.1103/physrevd.103.083020 Whelan JT, Prix R, Cutler CJ, Willis JL (2014) New coordinates for the amplitude parameter space of continuous gravitational waves. Class Quantam Grav 31:065002. https://doi.org/10.1088/0264-9381/31/6/065002. arXiv:1311.0065 [gr-qc] Whelan JT, Sundaresan S, Zhang Y, Peiris P (2015) Model-based cross-correlation search for gravitational waves from Scorpius X-1. Phys Rev D 91:102005. https://doi.org/10.1103/PhysRevD.91.102005. arXiv:1504.05890 [gr-qc] Whitbeck DM (2006) Observational consequences of gravitational wave emission from spinning compact sources. PhD thesis, The Penn State University. https://etda.libraries.psu.edu/catalog/7132 Williams PR, Schutz BF (2000) An Efficient matched filtering algorithm for the detection of continuous gravitational wave signals. In: Meshkov S (ed) Gravitational waves: third Edoardo Amaldi Conference. AIP Conference Series, vol 523. pp 473–476. https://doi.org/10.1063/1.1291918. arXiv:gr-qc/9912029 Woan G, Pitkin MD, Haskell B, Jones DI, Lasky PD (2018) Evidence for a minimum ellipticity in millisecond pulsars. Astrophys J 863(2):L40. https://doi.org/10.3847/2041-8213/aad86a Worley A, Krastev PG, Li BA (2008) Nuclear constraints on the moments of inertia of neutron stars. Astrophys J 685(1):390–399. https://doi.org/10.1086/589823 Yamamoto TS, Tanaka T (2021) Use of an excess power method and a convolutional neural network in an all-sky search for continuous gravitational waves. Phys Rev D 103(8):084049. https://doi.org/10.1103/PhysRevD.103.084049. arXiv:2011.12522 [gr-qc] Yao JM, Manchester RN, Wang N (2017) A new electron-density model for estimation of pulsar and FRB distances. Astrophys J 835(1):29. https://doi.org/10.3847/1538-4357/835/1/29 Yim G, Jones DI (2020) Transient gravitational waves from pulsar post-glitch recoveries. Mon Not R Astron Soc 498(3):3138–3152. https://doi.org/10.1093/mnras/staa2534. arXiv:2007.05893 [astro-ph.HE] Yoshida S, Yoshida S, Eriguchi Y (2005) R-mode oscillations of rapidly rotating barotropic stars in general relativity: analysis by the relativistic Cowling approximation. Mon Not R Astron Soc 356(1):217–224. https://doi.org/10.1111/j.1365-2966.2004.08436.x Yoshino H, Kodama H (2014) Gravitational radiation from an axion cloud around a black hole: Superradiant phase. PTEP 2014:043E02. https://doi.org/10.1093/ptep/ptu029. arXiv:1312.2326 [gr-qc] Yoshino H, Kodama H (2015) The bosenova and axiverse. Class Quantum Grav 32(21):214001. https://doi.org/10.1088/0264-9381/32/21/214001 Yunes N, Miller MC, Yagi K (2022) Gravitational-wave and x-ray probes of the neutron star equation of state. Nat Rev Phys 4(4):237–246. https://doi.org/10.1038/s42254-022-00420-y Zel’dovich YB (1971) Generation of waves by a rotating body. Sov J Exp Theor Phys Lett 14:180 Zhang B, Harding AK, Muslimov AG (2000) Radio pulsar death line revisited: Is PSR J2144–3933 anomalous? Astrophys J Lett 531:L135–L138. https://doi.org/10.1086/312542. arXiv:astro-ph/0001341 Zhang Y, Papa MA, Krishnan B, Watts AL (2021) Search for continuous gravitational waves from Scorpius X-1 in LIGO O2 data. Astrophys J Lett 906(2):L14. https://doi.org/10.3847/2041-8213/abd256 Zhu SJ, Papa MA, Eggenstein HB, Prix R, Wette K, Allen B, Bock O, Keitel D, Krishnan B, Machenschalk B, Shaltev M, Siemens X (2016) Einstein@Home search for continuous gravitational waves from Cassiopeia A. Phys Rev D 94:082008. https://doi.org/10.1103/PhysRevD.94.082008 Zhu SJ, Papa MA, Walsh S (2017) New veto for continuous gravitational wave searches. Phys Rev D 96(12):124007. https://doi.org/10.1103/PhysRevD.96.124007. arXiv:1707.05268 [gr-qc] Zhu SJ, Baryakhtar M, Papa MA, Tsuna D, Kawanaka N, Eggenstein HB (2020) Characterizing the continuous gravitational-wave signal from boson clouds around Galactic isolated black holes. Phys Rev D. https://doi.org/10.1103/physrevd.102.063020 Zimmermann M (1978) Revised estimate of gravitational radiation from Crab and Vela pulsars. Nature 271(5645):524–525. https://doi.org/10.1038/271524a0 Zimmermann M, Szedenits E (1979) Gravitational waves from rotating and precessing rigid bodies: simple models and applications to pulsars. Phys Rev D 20:351–355. https://doi.org/10.1103/PhysRevD.20.351 Zweizig J, Riles K (2021) Information on self-gating of \(h(t)\) used in O3a continuous-wave searches. Technical Report. LIGO Report T2000384, LIGO. https://dcc.ligo.org/T2000384